

POWER2DM
“Predictive model-based decision support for diabetes patient

empowerment”

Research and Innovation Project

PHC 28 – 2015: Self-management of health and disease and decision support systems

based on predictive computer modelling used by the patient him or herself

POWER2DM D4.10 (or D4.6.1b)

Privacy/Security Enablers for POWER2DM Services II

Due Date: 31.10.2017

Actual Submission Date: 31.10.2017

Project Dates: Project Start Date: February 01, 2016

Project End Date: July 31, 2019

Project Duration: 42 months

Deliverable Leader: SRDC

Project co-funded by the European Commission within H2020 Programme (20015-2016)

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

H2020-POWER2DM

POWER2DM • Page 2 of 55

 Document History:

Version Date Changes From Review

0.1 06.10.2017 Initial Version (Section 3) SRDC

0.2 13.10.2017 Section 4 Demonstration of functionalities SRDC

0.3 23.10.2017 Update the summary section (Section 2) SRDC

1.0 30.10.2017 Latest compiled version SRDC ALL

Contributors (Benef.) Tuncay Namlı (SRDC)

Ozan Köse(SRDC)

Responsible Author Tuncay Namlı Email tuncay@srdc.com.tr

H2020-POWER2DM

POWER2DM • Page 3 of 55

POWER2DM Consortium Partners

Abbv Participant Organization Name Country

TNO Nederlandse Organisatie voor Toegepast

Natuurwetenschappelijk Onderzoek

Netherlands

IDK Institute of Diabetes “Gerhardt Katsch” Karlsburg Germany

SRDC SRDC Yazilim Arastirma ve Gelistirme ve Danismanlik Ticaret

Limited Sirketi

Turkey

LUMC Leiden University Medical Center

Netherlands

SAS SAS Servicio Andaluz de Salud Spain

SRFG Salzburg Research Forschungs Gesellschaft Austria

PD PrimeData Netherlands

iHealth iHealth EU France

H2020-POWER2DM

POWER2DM • Page 4 of 55

Table of Contents

Table of Contents .. 4

1 Introduction ... 5

1.1 Purpose & Scope ... 5

1.2 References ... 5

2 Summary of Privacy and Security Mechanisms .. 5

2.1 Summary of Information Collection and Use ... 5

2.2 Identification of Users ... 6

2.3 Authentication ... 7

2.4 Authorization and Access Control ... 7

2.5 Communication Security ... 8

2.6 Auditing ... 8

3 Summary of Implementation ... 8

3.1 Onauth Server .. 9

3.1.1 Configuring Onauth Server for POWER2DM .. 9

3.1.2 Scope Values ... 11

3.1.3 User Claims ... 12

3.1.4 User Registration ... 13

3.1.5 Client Registration ... 17

3.2 Authentication & Authorization .. 20

3.2.1 Client Sends Authentication Request .. 21

3.2.2 End User Authentication ... 22

3.2.3 Client Receives Code .. 22

3.2.4 Client Exchanges Code with Token .. 23

3.2.5 Client Receives Token ... 24

3.2.6 Client Uses Token to Access Information ... 25

3.2.7 Refreshing Access Tokens .. 27

3.2.8 Authorization with Client Credentials ... 28

3.3 Auditing ... 29

4 Demonstration of Functionalities .. 31

4.1 Authorization & Authentication .. 31

4.1.1 Single Sign On ... 31

4.1.2 User Consent ... 32

4.1.3 Requests with Sample Client ... 33

4.2 Onauth Manager .. 34

4.2.1 Home Screen ... 34

4.2.2 Policy Management ... 36

4.2.3 User Registration ... 36

4.2.4 Client Registration ... 37

H2020-POWER2DM

POWER2DM • Page 5 of 55

4.2.5 Audit Viewer ... 39

5 Appendices .. 40

5.1 Appendix A – POWER2DM Privacy Policy ... 40

1 Introduction

1.1 Purpose & Scope

The purpose of deliverable D4.10 is to provide final privacy and security mechanisms applied in

POWER2DM system as well as to demonstrate them. This covers the authentication, authorization,

auditing and other security mechanisms to protect the security and privacy of patients’ medical and

identity data. POWER2DM will consist of several services that exchange patient’s data among them

and visualize them to the users (practitioners and patient) in several phases. In order to ensure strict

privacy and security requirements, they should implement certain processes and cryptographic protocol

based on the specified security and privacy policies. This deliverable will enable these common

mechanisms (enablers) and define how the software specifications and standards are implemented.

D4.9 provides an initial overview of the architecture and specifications/standards used to provide the

security and privacy mechanisms. This deliverable, D4.10 focuses on implementation details and

demonstration of functionalities. On the other hand, within the project, some of the requirements

changed due to requests from piloting partners and therefore we have updated some mechanisms (e.g.

Section 2.2 User identification). Therefore, in Section 2, we provide a new summary of the privacy and

security mechanisms to be applied in POWER2DM (Updated version of same section in D4.9). Section

Error! Reference source not found. provides further details of the implementation of sub components

and Section 4 provides snapshots and demonstration of the functionality provided by the Core Services

component.

1.2 References

• D4.9 (D4.6.1a) Privacy Security Enablers I

• D1.3 Conceptual Design

2 Summary of Privacy and Security Mechanisms

2.1 Summary of Information Collection and Use

POWER2DM SMSS collects a range of information about patients to evaluate the medical, contextual

and psychological situation of the patient to provide the necessary self-management support for patient

and support the care management process in shared-decision making encounters. Although, the details

of the information to be collected in POWER2DM Care Program will be provided in D5.3

“POWER2DM Evaluation Campaign Protocol “, anyone can consult the D4.1 “Personal Data Model

and Service API” to understand the general coverage. In this section, the following list shows the

categorization of information collection in terms of security and privacy perspective;

• User Identity Data: After the discussions with piloting partners, the decision was to limit the

identity data to be collected from patient as far as possible. The only identity data elements are

as follows;

o email: This is required due to management of patient account (e.g. password lost, etc)

and used to be a username for patient

H2020-POWER2DM

POWER2DM • Page 6 of 55

• Personal Lifestyle and Health Data: This is the set of personal health records collected via

medical devices, collected from patient via POWER2DM SMSS Applications or 3rd party

lifestyle applications, and data entries of care providers during shared-decision making. This

includes daily observations, clinical test results, problems, barriers, goals, etc. This set also

includes the following information; which can be considered as identity data but not provide

much information about the identity of patient within the POWER2DM patient population.

o age: Age is required in POWER2DM risk score calculation algorithms and also for

POWER2DM care and collected as a birth year instead of whole birth date to preserve

privacy.

o gender: Gender is required in POWER2DM risk score calculation algorithms and also

within POWER2DM care program

o ethnicity: Ethnicity is required for POWERDM’s risk score calculation algorithms

All these data will be protected separately from patient’s main identity data (email and the study

number) and maintained in pseudynomized way.

• Application Usage Behaviour and Contextual Data: This is the set of analytic information

related with how patient use the POWER2DM SMSS applications and how they react to

interventions, as well as the contextual data like location (home, office, etc.), interruptibility,

activity (walking, transportation, etc.) that can be derived from the on-board mobile phone

sensors.

• Patient Consent, Privacy Policies and Auditing Data: This is the set of privacy policies and

consent authored by patient and the audit logs describing all the operations done in

POWER2DM (e.g. accessing to data, login to application, updating data, etc)

In terms of information sharing and disclosure, POWER2DM have the following general policy for

these categories;

• For “User Account/Identity Data”, the default POWER2DM policy is to disclose the

information to only the owner (patient). The information is only used for authentication and

account management mechanisms.

• For “Personal Lifestyle and Health Data”, the information is disclosed only to authorized

users according to the specified privacy policy in POWER2DM. Mostly the information is used

by the POWER2DM SMSS to display the content back to the patient himself or perform some

analytics/algorithms to make some deductions and make actions accordingly (interventions;

reminders, motivations, etc.). On the other side, information is also used to support the shared-

decision making process for diabetes care management. Therefore, to assure the realization of

POWER2DM care process needs at least some permission for the corresponding care providers.

Conflicting rules that will prevent the realization of POWER2DM care process will not be

allowed.

• For “Application Usage Behaviour and Contextual Data”, the information is only used by

POWER2DM SMSS internally and will not be disclosed to any user other than patient

himself/herself. The SMSS use the information in its internal algorithms and decision flows.

2.2 Identification of Users

Identification of users (patients and care providers) and systems involved in the POWER2DM processes

is important in terms of privacy and security.

For patient identification, POWER2DM will manage the following identifiers:

• Study Number: This is the identifier assigned to the patient by the practitioner while registering

patient to the system. Similarly, the identifier will be used by practitioners to identify and

confirm patient is the right patient. This is bound to the user account data (email) in Core

Service. Study number will not be disclosed to any client, and will only be used during patient

selection procedure where practitioner select the patient among all his/her patients.

H2020-POWER2DM

POWER2DM • Page 7 of 55

• Pseudonymized data store identifier: This is the random unique identifier assigned to patient

by Personal Data Store (PDS). PDS share this value with Core Service during patient

registration and Core Service maps this value to patient’s identity data (email, study number)

internally. Core Service embed this value (encrypted) into access tokens in authorization process

and when the client uses the access token to access the resources in PDS, PDS use the value to

match to the correct patient’s records.

For care providers, there will be random unique identifier assigned by PDS and this will be bound to

care provider’s identity data in Core Services.

2.3 Authentication

POWER2DM deals with both user authentication and client authentication.

For user authentication, OpenID Connect 1.01 protocol will be implemented where the “Core Services”

component will provide the protocol’s endpoints (Authorization Endpoint, etc. see Section Error!

Reference source not found. for details) and web application (single sign-on page) to authenticate the

user. POWER2DM front end components will use the endpoints provided by the Core Service to be sure

that the user is authenticated. User authentication is done by username and password in default, however,

users can select 2-factor authentication via SMS to their mobile phone in addition to username/password.

For client (system) authentication, only Confidential Clients are authenticated (as it is theoretically

impossible to authenticate Public Clients) and SSL client authentication with x509 certificates will

be used. For each component, an X509 certificate will be generated which is signed by a root

POWER2DM certificate.

2.4 Authorization and Access Control

In POWER2DM, there will be two types of data access;

i. a client system accessing on behalf of a user to a specific patient’s data

a. (Public Client)

i. e.g. POWER2DM Shared-decision Making Web Application accessing directly

to PDS for patient’s personal records on behalf of a care provider to visualize

the data to care-provider

ii. e.g. POWER2DM SMSS Mobile App accessing PDS on behalf of patient

himself/herself

b. (Confidential Client) e.g. POWER2DM Action Plan Engine accessing the records of

patient on behalf of him/her to analyse them and provide feedback to patient for his

performance in the weekly review of action plan

ii. a confidential client accessing data for internal analysis and algorithm execution

a. POWER2DM Communication Engine accessing the data of each patient

(anonymously) to perform daily analytics to plan for the interventions

For the first alternative (data access on behalf of a user), a delegated access control mechanism will

be implemented in POWER2DM. Access control mechanism will be based on “Role Based Access

Control” where the policy can allow or deny access of a specific role in granularity of record types

(e.g. Blood Glucose Measurements, Goals, Personal Values, etc.). The role and record type hierarchies

will be defined in line with the record types stored in PDS and the implementations will be configurable

in terms of new role or record type definitions. For POWER2DM pilots, privacy policy will be as follows

(more details will be given in Section 3);

1 http://openid.net/specs/openid-connect-core-1_0.html

http://openid.net/specs/openid-connect-core-1_0.html

H2020-POWER2DM

POWER2DM • Page 8 of 55

• Users who has assigned to “care manager” or “care supporter” role (during patient

registration) for the patient can access the Personal Lifestyle and Health Data of the patient

• Patient himself having assigned to “self care manager” can access all his own data.

• Patient may assign “self care supporter” role to anyone (friends or relatives) and these users

can see the patient Personal Lifestyle and Health Data

Core Services component will provide an OAuth 2.02 complaint Authorization Service to manage the

authorization requests and map the decisions from PDP to permissions (OAuth scopes) bound to the

issued access token (JWT token) to the client. The PDS will verify the access token and decide on the

authorization decision based on the bound permissions (scopes).

For the second alternative, specified Confidential Clients (POWER2DM Backend components) will be

authorized to access all the data as they can reach only to pseudonymised data and cannot identify

whose records are they.

2.5 Communication Security

Communication among POWER2DM backend components (which can be deployed on different

machines) will be protected by TLS v1.23 protocol with mutual authentication. The implementations

will conform to the IHE Audit Trail and Node Authentication (ATNA)4 specification.

Communication between a POWER2DM frontend component and POWER2DM backend component

will be protected by TLS v1.2 protocol.

2.6 Auditing

Auditing is an important concept for non-repudiation and being transparent to patients who are accessing

his/her personal health data. For the auditing mechanism, FHIR compliant auditing mechanism will be

built in which all audits are stored in a secure audit repository by the FHIR Audit Event format by FHIR

services. Personal Data Store and Core Services will log all the access requests and data disclosures in

this repository.

In addition, a web interface will be provided for patient to show the list of accesses to his/her personal

health records.

3 Summary of Implementation

POWER2DM security and privacy management architecture consists of three main sub-components;

Onauth Server which represents the Core services and Onauth Manager which represents the Security

and privacy management UI and Audit Repository.

• Onauth Server provides services for user registration, privacy policy management and

endpoints defined in OpenID Connect Core 1.05 standard to perform authentication and

authorization (Authorization Endpoint, Token Endpoint, etc.).

• Onauth Manager is a web application for representing the functionalities of Onauth Server

with following user screens; single sign on UI, consent/approval UI, policy management UI,

client registration UI, user registration UI and audit viewer UI.

2 https://tools.ietf.org/html/rfc6749
3 https://www.ietf.org/rfc/rfc5246.txt
4 http://wiki.ihe.net/index.php/Audit_Trail_and_Node_Authentication
5 http://openid.net/specs/openid-connect-core-1_0.html

https://tools.ietf.org/html/rfc6749
https://www.ietf.org/rfc/rfc5246.txt
http://wiki.ihe.net/index.php/Audit_Trail_and_Node_Authentication

H2020-POWER2DM

POWER2DM • Page 9 of 55

• Audit Repository is a FHIR repository that has the ability to only manage FHIR AuditEvent

resources which are send by other POWER2DM components.

3.1 Onauth Server

3.1.1 Configuring Onauth Server for POWER2DM

Onauth Server could be initiated with default policy definitions and set of credentials. In order to

configure Onauth Server for POWER2DM, a default privacy policy and set of credentials have been

defined. Rest of this section focuses on the details of these configurations and definitions.

3.1.1.1 Realm

Each realm represents a different domain in Onauth Server environment, every realm has their own set

of rules and users. Realm definition consists of a name for representational purposes and a unique realm

ID for identifying the realm and its components. Users in Onauth Server can only be a member of

single realm and they are treated with respect to the rules and concepts defined by their realm.

POWER2DM is also a realm in Onauth Server environment, following is the realm definition of

POWER2DM realm;

{

 "id": "power2dm",

 "name": "Power2dm Realm"

}

3.1.1.2 Groups

Groups in Onauth Server represents the rules and concepts defined for specific subset of users in the

realm. Groups are defined under a realm and groups may define modified rules and concepts by

extending the base definitions defined by their realm. Creating groups and assigning a to user to a group

is decided by the administration; being a member of a group is not mandatory in Onauth Server

environment. Users that belong to a group inherits the rules and concepts defined by their group. Group

definitions consists of a name for representational purposes, a unique group ID for identifying the group

and the ID of the realm that group belongs to.

In POWER2DM, for testing purposes, a group is defined for each partner to prevent unwanted

modifications on their test users. Following is the group definition of a LUMC group;

{

 "id": "lumc",

 "name": "Leiden University Medical Center",

 "realmId": "power2dm"

}

3.1.1.3 Roles

Authorization of the users in Onauth Server environment are done based on the roles of the users. Each

role defines access to some set of permissions and having that role authorizes user for permission that

role have. Role definitions contain following fields;

id Unique identifier of the role

name Human readable name of the role

realm_id ID of the role that this role belongs to

isFunctional Flag that indicated if rules is functional or structural

H2020-POWER2DM

POWER2DM • Page 10 of 55

Following is the definition of the role in POWER2DM;

{

 "id": "patient",

 "name": "Patient",

 "realm_id": "power2dm",

 "isFunctional": false

}

POWER2DM realm defines two types of role; structural and functional roles. Structural roles identify

type and category of user with respect to the POWER2DM realm (e.g. realm administrator, physician).

Users could be assigned to more than one structural role and being assigned to multiple roles authorizes

them for accessing all the permissions that set of roles define. Besides administrative roles (e.g.

realm_admin, group_admin) which are defined for all realms, POWER2DM realm defines three more

structural roles;

practitioner A Practitioner providing care with support of POWER2DM

nurse A Nurse supporting care in POWER2DM

patient A Patient in POWER2DM

Functional roles identify type and category of user with respect to the specific patient. Every patient in

POWER2DM realm has a care team that maps functional roles to the users. So, users’ permissions may

vary from patient to patient with respect to the functional role of the user. For POWER2DM realm, four

functional roles are defined;

care-manager Assigned to Practitioners that manage the care of the patient in POWER2DM

care-supporter Assigned to Nurses that supports the care of the patient in POWER2DM

self-care-

manager

Assigned to patient himself as the manager of the self-management. Patient

may assign this role to a relative to give a full access to the self-management

system.

self-care-

supporter

Patient may assign this role to relatives or friends to give him a partial access

to the self-management system.

3.1.1.4 Rules

Rules define the access of a role on specific protected resource. There is a rule definition in Onauth

Server for each relation between a role and a resource set. Rule definitions contain following fields;

resourceSetId Indicates which resource is affected by this rule.

roleId Indicates which role can access this rule.

policyId ID of the policy that this rule belongs to.

permissions Only required for smart scopes values (see 2.1.2 for scope values). It defines

which permissions are given for resource set (read or write)

Following is the rule definition that identifies the relation between care-manager and Observation

resource;

{

 "resourceSetId": "Observation",

 "roleId": "care-manager",

 “policy_id” : “power2dm_privacy_policy”

H2020-POWER2DM

POWER2DM • Page 11 of 55

 "permissions": {

 "read": 1,

 "write": 1,

 "isSmartScope": true

 }

}

3.1.1.5 Privacy Policy Definition

Privacy Policy definition consists of set of rules and options that completely identifies the authorization

profile of realm. Every realm within Onauth Server has a base privacy policy that defines the mapping

between roles and resources. In addition, groups and patients within a realm can create their policies by

extending the base privacy policy of their realm. If a group defines its own policy, that policy is

considered as the base privacy policy for its users. Privacy policy definition contains following fields;

id Unique identifier of the policy.

name Human readable name of the policy.

description Simple description that explains the purpose of policy.

authorId Identifier of the user who defined the policy.

realm_id Identifier of the realm that policy belongs to.

group_id Identifier of the group (If the policy defined for the group) that policy belongs

to.

patient_access Option that are used to decide which set of patients a practitioner can access.

Options are;

• realm: Practitioners can access every patient in their realm

• group: Practitioners can access every patient in their group

• care-team: Patients are only accessed by the practitioners within their

care-team.

isBase Flag that indicates if the policy is a base policy

isActive Flag that indicates if the policy is the active policy of the author

rules Rules that defines the relation between roles and resources.

See Appendix A for the complete base privacy definition of POWER2DM.

3.1.2 Scope Values

Onauth Server binds scope values to access tokens to decide which token can access which protected

resources. Scopes values are generated with respect to the rule definitions that are defined for user’s

role. For Onauth Manager and PDS the following scopes are defined;

openid Informs the Authorization Server that the Client is making an

OpenID Connect6 Authentication request.

profile This scope value requests access to the End-User's default

profile information (claims), which are: given_name,

family_name, username, picture, gender, birthdate,zoneinfo,

locale, pds_resource_type, pdm_user_type, pdm_care_givers,

pdm_organization (See Section 2.1.3 for the definition of user

claims).

Email This scope value requests access to the email and

email_verified claims

address This scope value requests access to the address claim.

6 http://openid.net/specs/openid-connect-core-1_0.html

H2020-POWER2DM

POWER2DM • Page 12 of 55

patient/resourceType.permission This scope value requests access to the patient’s protected

resources on PDS. The resource type could be any FHIR

resource type or (*) (which means all resource types the user

authorized for) and the permission could be read, write or (*)

(which means both read and write access). E.g.:

patient/Observation.read means read all observations about

patient, patient/*.read means read all available data about

patient. This type of scopes are defined by “Health Relationship

Trust Profile for Fast Healthcare Interoperability Resources

(FHIR) OAuth 2.0 Scopes”7

patient/UserInfo.permission OPTIONAL. This scope value is used to access the UserInfo of

patient (only given_name, family_name, picture, gender,

birthdate). Users also may get this scope with patient/*.*.

fhir/patient This scope is defined for confidential clients that are authorized

with client credentials and that needs offline access to PDS

(without any user, for internal data processing). They can

request this scope to access all the data in PDS.

offline_access This scope value requests that an OAuth 2.0 Refresh Token8

be issued that can be used to obtain an Access Token that grants

access to the End-User's UserInfo Endpoint even when the End-

User is not present (not logged in).

3.1.3 User Claims

Fields of a user’s profile information stored at Onauth Server are protected with claim values. Some

scopes defined in Onauth Server enables access to some set of claim values. For example, being

authorized for profile scope value authorizes access token for accessing; given_name, family_name,

username, picture, gender, birthdate, zone_info, locale, pds_resource_type, pdm_user_type,

pdm_care_givers, pdm_organization claim values. Onauth Server supports following standard claim

values;

username Unique username of the user which is used for login.

password User password.

given_name Name of the user.

family_name Surname/Family name of the user.

middle_name Middle name(s) of the user.

gender Gender of the user.

birthdate Birthdate of the use (in ISO date format e.g. 1966-03-03).

email Email of the user.

address JSON Object representing the address of the user (See Section 5.1.1 of OpenID

Connect Core 1.09 for the details of address claim).

picture URL of user’s profile picture.

zone_info User’s time zone.

locale Language tag (e.g. en-US) indicating the language of user.

Following extra claims are defined in Onauth Server for POWER2DM;

pdm_organization Id of the organization that the user is assigned to. For patients, this may be the

Healthcare Organization that patient is getting the care. For physicians and nurses,

this will be the Healthcare Organization they are working for.

roles Set of structural roles assigned to the user. See Section 2.1.1.3 for the description of roles.

7 http://openid.net/specs/openid-heart-fhir-oauth2-1_0-2017-05-31.html
8 https://tools.ietf.org/html/rfc6749
9 http://openid.net/specs/openid-connect-core-1_0.html

H2020-POWER2DM

POWER2DM • Page 13 of 55

care_team Only used for patients. JSON object representing the care team assigned to the patient.

Each parameter name represents a functional role and its value (array of string) provides

the identifiers of users assigned to that functional role for patient. See Section 3.1.1.3 for

the description of roles. The following is an example care_team claim;

"care_team”: {

 "care-manager": ["cad2a677-bc63-4d19-ae03-545fc872dd3”],

 "care-supporter": [],

 "self-care-manager": ["36d8b11b-1c68-421d-bc89-cc7a92471e61"],

 "self-care-supporter": []

 }

3.1.4 User Registration

Onauth Server also provides endpoints for creating and updating users. The endpoint only accepts

requests if a valid access token that is authorized for required scopes is provided at the Authorization

header. Following sections explains the details of those endpoints;

3.1.4.1 Create/Invite Endpoint

To perform user registration, the authenticated end user (that will perform the user registration) should

be authorized for the at least one user_registration/{role} scope (e.g. a user with

user_registration/patient can register users with patient role). In POWER2DM realm, users who have

practitioner or nurse role can register users with patient role and users who have group_admin role can

register users either with practitioner or nurse role.

Onauth Server enables the authenticated users to register user either by providing all the required

information or by only inviting him through an email address. In POWER2DM pilots, for patient

registration, invitation mechanism will be used.

The schema and details of registration request is defined below. Note that, for patient registration, not

all the parameters will be used.

POST power2dm/onauth/api/userinfo

Host: app.srdc.com.tr

Authorization: Bearer access_token

{

 username: String,

 password: String,

 family_name: String,

 given_name: String,

 middle_name: String,

 picture: String,

 gender: String,

 birthdate: String,

H2020-POWER2DM

POWER2DM • Page 14 of 55

 pdm_user_type: String,

 zone_info: String,

 email: String,

 address: Address Claim object,

 locale: String,

 roles: List[String]

}

username REQUIRED. Preferred username of the user which will be used for login. For

patients, this will be the Study Number assigned by the practitioner that

registers the patient.

password OPTIONAL. User password

given_name OPTIONAL. Name of the user. (for non-patient users)

family_name OPTIONAL. Surname/Family name of the user. (for non-patient users)

middle_name OPTIONAL. Middle name(s) of the user. (for non-patient users)

gender OPTIONAL Gender of the user. (REQUIRED for patient)

birthdate OPTIPNAL. Birth year of the user (e.g. 1966). (REQUIRED for patient)

email OPTIONAL. Email of the user. (REQUIRED for patient)

address OPTIONAL. JSON Object representing the address of the user (See Section

5.1.1 of OpenID Connect Core 1.010 for the details of address claim).

picture OPTIONAL. URL of user’s profile picture.

zone_info OPTIONAL. User’s time zone.

locale OPTIONAL. Language tag (e.g. en-US) indicating the language of user.

roles REQUIRED. Set of roles defined for the user.

For performing registration, the parameters defined above should be wrapped in a JSON object and sent

to the UserInfo endpoint with Http POST request with access token that is authorized for registration at

the Authorization header. Following is an example request for registering a patient;

POST power2dm/onauth/api/userinfo

Host: app.srdc.com.tr

Authorization: Bearer SlAV32hkKG

Content-Type: application/json

{

 "username": "patient_sas1",

 "gender": "female",

 "birthdate": "1966",

 "email": xyz@gmail.com

 "roles": ["patient"]

}

10 http://openid.net/specs/openid-connect-core-1_0.html

H2020-POWER2DM

POWER2DM • Page 15 of 55

Upon successful registration request, Onauth Server responds with 201 CREATED with stored

UserInfo of the registered user, returned UserInfo may contain additional fields. The following is a non-

normative example of a registration response;

HTTP/1.1 201 CREATED

Content-Type: application/json

Cache-Control: no-cache, no-store

Pragma: no-cache

{

 "sub":"36d8b11b-1c68-421d-bc89-cc7a92471e61",

 "preferred_username":"patient_sas1",

 "gender": "female",

 "care_team": {

 "care-manager": ["cad2a677-bc63-4d19-ae03-545fc872dd33"],

 "care-supporter": [],

 "self-care-manager": ["36d8b11b-1c68-421d-bc89-cc7a92471e61"],

 "self-care-supporter": []

 },

 "pdm_organization":"sas",

 "roles": ["patient"]

}

Here as you can see, an identifier (data store identifier) is assigned to patient which is given in “sub”

element. Furthermore, the registrar is assigned to “care manager” role for patient where the patient is

assigned for self-care-manager role automatically.

An unsuccessful create response would be 401 Unauthorized or 400 Bad Request with either FHIR

Operation Outcome (which means there was a problem at PDS) or a message that explain the error. The

following is a non-normative example of a registration response (selected username is already taken);

HTTP/1.1 400 Bad Request

Content-Type: text/plain

Cache-Control: no-cache, no-store

Pragma: no-cache

{

 “error”: “username_taken”

 “error_desc”: “Username is already taken. Please select another username”

}

H2020-POWER2DM

POWER2DM • Page 16 of 55

3.1.4.2 Update Endpoint

Update operations (update of user profile) could only be performed by the owner of the UserInfo. In

order to perform update operation, user must be authorized for the user_info_update scope. Parameters

of the update operation are the same for create operation except username, password, role and

pdm_user_type could not be updated from this endpoint. Those parameters will be ignored even if they

exist in request body. The schema of update request is defined below;

PUT power2dm/onauth/api/userinfo

Host: app.srdc.com.tr

Authorization: Bearer access_token

{

 family_name: String,

 given_name: String,

 middle_name: String,

 picture: String,

 gender: String,

 birthdate: String,

 zone_info: String,

 email: String,

 address: Address Claim object,

 locale: String,

 }

For updating profile information, the parameters defined above should be wrapped in a JSON object and

sent to the UserInfo endpoint with Http PUT request. Following is an example request for updating

profile information,

POST power2dm/onauth/api/userinfo

Host: app.srdc.com.tr

Authorization: Bearer SlAV32hkKG

Content-Type: application/json

{

 "family_name": "Jane",

 "given_name": "Doe",

 "gender": "female",

 "birthdate": "1966-10-10",

}

Upon successful update request, Onauth Server responds with 200 OK with updated UserInfo at the

body. The following is a non-normative example of an update response;

H2020-POWER2DM

POWER2DM • Page 17 of 55

HTTP/1.1 200 OK

Content-Type: application/json

Cache-Control: no-cache, no-store

Pragma: no-cache

{

 "sub":"36d8b11b-1c68-421d-bc89-cc7a92471e61",

 "given_name": "Doe",

 "family_name": "Jane",

 "preferred_username":"patient_sas1",

 "gender": "female",

 "pdm_user_type": "patient",

 "care_team": {

 "care-manager": ["cad2a677-bc63-4d19-ae03-545fc872dd33"],

 "care-supporter": [],

 "self-care-manager": ["36d8b11b-1c68-421d-bc89-cc7a92471e61"],

 "self-care-supporter": []

 },

 "pdm_organization":"sas"

}

An unsuccessful update response would be 401 Unauthorized or 400 Bad Request with a message that

explains the error. The following is a non-normative example of a error response (request without name

parameter):

HTTP/1.1 400 Bad Request

Content-Type: text/plain

Cache-Control: no-cache, no-store

Pragma: no-cache

The request content was malformed:

No usable value for name

3.1.5 Client Registration

In order to use services that are defined in this documentation, client applications must register

themselves to Onauth Server. In the POWER2DM setup, all the POWER2DM components will be

registered as clients to the Onauth server. Onauth Server uses “Dynamic Client Registration” process

explained in OpenID Connect Dynamic Client Registration 1.011. Following fields are important for

11 http://openid.net/specs/openid-connect-registration-1_0.html

H2020-POWER2DM

POWER2DM • Page 18 of 55

POWER2DM to register a new client (for the full list of fields and their details see section 2 of OpenID

Connect Dynamic Client Registration 1.012);

redirect_uris REQUIRED. Array of Redirection URI values used by the client.

One of these registered Redirection URI values MUST exactly

match the redirect_uri parameter value used in each Authorization

Request.

grant_types OPTIONAL. List of the grant types client is declaring that it will

restrict itself to using. The grant type values used by Onauth

Server are:

• authorization_code: It is used for authorization process

using code.

• client_credentials: It is used for authorization with client

credentials.

• refresh_token: It is used for refreshing access token

client_name RECOMMENDED. Name of the Client to be presented to the end-

user. If present, client name is displayed to end-user during

approval process. e.g. POWER2DM SMSS Mobile Application

logo_uri RECOMMENDED. URL that references a logo for the Client

application. If present, the logo is displayed to the End-User during

approval. The value of this field must point to a valid image file.

client_uri OPTIONAL. URL to the home page of the client application. The

value of this field must point to a valid Web page. If present, this

URL is displayed to the end-user during approval.

contacts OPTIONAL. Array of e-mail addresses of people responsible for

this client application. If present, contacts are displayed to the end-

user during approval.

policy_uri OPTIONAL. URL that the Relying Party Client provides to the

End-User to read about the how the profile data will be used

tos_uri OPTIONAL. URL that the client application provides to the end-

user to read about its terms of service. The value of this field must

point to a valid web page. If present, this URL is displayed to the

end-user during approval.

token_endpoint_auth_method OPTIONAL. Requested Client Authentication method for the

Token Endpoint. The defined options are client_secret_basic and

none. If omitted, the default is client_secret_basic. Public apps

should select this option as none.

For performing registration, the parameters defined above should be wrapped in a JSON object and sent

to the Client endpoint with Http POST request. Following is an example request for registering a client;

POST power2dm/onauth/api/register

Host: app.srdc.com.tr

Content-Type: application/json

{

 "redirect_uris": [

 "http://app.srdc.com.tr/power2dm/onauth/sample-smart-client/authorize-cb"

],

 "grant_types": [

12 http://openid.net/specs/openid-connect-registration-1_0.html

H2020-POWER2DM

POWER2DM • Page 19 of 55

 “authorization_code"

],

 "client_name": "SRDC Sample Client",

 "logo_uri": "http://www.srdc.com.tr/wp-content/uploads/2014/12/srdc-wp.png",

 "client_uri": "http://dummyclient.com",

 "contacts": [

 "tuncay@srdc.com.tr"

],

 "token_endpoint_auth_method": "none"

}

Upon successful registration request, Onauth Server responds with 201 CREATED with stored client

metadata of the registered client application. Returned client metadata includes unique client_id and

client_secret of the client. Public applications which select token_endpoint_auth_method as none may

ignore client secret but private applications should keep their secret safe. The following is a non-

normative example of a registration response;

HTTP/1.1 201 Created

Content-Type: application/json

{

 "client_id": "fdb74fa7-cb60-423f-87ee-89dba4c490c1",

 "client_secret": "r247v76ngrnga8d7hdojmmaj9m",

 "redirect_uris": [

 "http://app.srdc.com.tr/power2dm/onauth/sample-smart-client/authorize-cb"

],

 "client_name": "SRDC Dummy Client",

 "client_uri": "http://dummyclient.com",

 "logo_uri": "http://www.srdc.com.tr/wp-content/uploads/2014/12/srdc-wp.png",

 "contacts": [

 "tuncay@srdc.com.tr"

],

 "token_endpoint_auth_method": "none",

 "scope": "profile openid address email patient user fhir/patient",

 "grant_types": [

 "authorization_code"

],

 "response_types": [

 "code"

H2020-POWER2DM

POWER2DM • Page 20 of 55

],

 "application_type": "web",

 "request_object_encryption_enc": "A128CBC-HS256",

 "user_info_encrypted_response_enc": "A128CBC-HS256",

 "id_token_signed_response_alg": "RS256",

 "id_token_encrypted_response_enc": "A128CBC-HS256",

 "client_secret_expires_at": 0,

 "require_auth_time": false

}

An unsuccessful registration response would be 400 Bad Request with a message that explains the error.

The following is a non-normative example of an error response (request without redirect_uri field):

HTTP/1.1 400 Bad Request

Content-Type: application/json

{

 "errorCode": "invalid_redirect_uri",

 "errorDesc": "At least 1 redirect_uri should be provided.",

}

3.2 Authentication & Authorization

Authentication and authorization of POWER2DM is managed by single sign on policy. Every client

application should request user authorization from Onauth Server to get an access token. Applications

can use that token to access users’ protected information. Authentication and authorization mechanism

of POWER2DM is implemented with respect to the rules and concepts defined in OpenID Connect

Core 1.013. Briefly, a client application should follow these steps to get an access token from the server

(see Figure 1);

1. Client application prepares an authorization request and sends it to the authorize endpoint of

Onauth Server,

2. Onauth Server authenticates the end user, obtains his/her consent for the client application,

3. Onauth Server redirects the end user back to the client application with code,

4. Client application sends code to the token endpoint of Onauth Server,

5. Onauth Server responds with the access token and id token,

6. Client uses the access token received from Onauth Server to access to the protected resources

of the user.

Remaining part of this section will focus on the details of steps defined above.

13 http://openid.net/specs/openid-connect-core-1_0.html

H2020-POWER2DM

POWER2DM • Page 21 of 55

Figure 1 Authentication and authorization flow

3.2.1 Client Sends Authentication Request

Client application initiates authentication flow by making a HTTP Get request to the authorize endpoint

of Onauth Server with following parameters;

response_type This value must be code. This type of call requests an Access Token

and an ID Token be returned from the Token Endpoint in exchange

for the code value returned from the Authorization Endpoint.

client_id Client Identifier valid at the Authorization Server.

scope OpenID Connect authentication requests MUST contain the openid

scope value. See Section 2.1.2 for more about the scope values

defined for POWER2DM.

redirect_uri Redirection Uri which the response will be sent. This Uri must match

one of the Redirection Uri values of client.

state Opaque value used to maintain state between the request and the call

back. Typically, Cross-Site Request Forgery (CSRF, XSRF)

mitigation is done by cryptographically binding the value of this

parameter with a browser cookie.

If parameters provided by the client is correct, user is responded with 302 Found and redirected to the

Onauth Manager for authentication. Erroneous requests are processed differently based on the error

generated; If the client application provided an incorrect client_id or redirect_uri, user is redirected

Onauth Manager with the proper error message, If the client_id and redirect_uri is correct then the

H2020-POWER2DM

POWER2DM • Page 22 of 55

user redirected to the client application’s redirect URI address with proper error message. An example

successful authentication request and response would be;

GET http://app.srdc.com.tr/power2dm/onauth/api/authorize?

 response_type=code

 &client_id=sample_client_id

 &redirect_uri=http%3A%2F%2Fapp.srdc.com.tr%2Fpower2dm%2F

 onauth%2Fsample-smart-client%2Fauth_callback.html

 &scope=openid%20profile%20patient/*.*%20offline_access

 &state=af0ifjsldkj

HTTP/1.1 302 Found

Location:

 http://app.srdc.com.tr/power2dm/onauth/onauthmanager/login?

 scope=profile%2Bopenid%2Bpatient%2F*.*%2Foffline_access

 &redirect_uri=http%3A%2F%2Fapp.srdc.com.tr%2Fpower2dm%2F

 onauth%2Fsample-smart-client%2Fauth_callback.html

 &client_id=sample_client_id

 &response_type=code

An error on client_id or redirect_uri parameters would result in;

HTTP/1.1 302 Found

Location:

 http://app.srdc.com.tr/power2dm/onauth/onauthmanager/information?

 error=unauthorized_client

 &errorDesc=Invalid+client_id+parameter

3.2.2 End User Authentication

Upon successful authentication request by the client application, Onauth Server redirects user to the

Onauth Manager and authentication process continues as follows;

• If the user does not already have an authenticated session, user is redirected login screen and

asked for his/her credentials (see Figure 3).

• User is asked whether he/she accepts or denies client application’s request for private information

(see Figure 4).

• If End user is not a patient (e.g. physician), user is asked to select a patient from list of related

patients (i.e. patients of the physician, see Figure 5). Only “Study Numbers” of patients will be

shown to the user for the selection.

3.2.3 Client Receives Code

If user gives his/her consent to the client application, Onauth Server issues a code and delivers it with

the state parameter to the client application. Client applications are responsible for checking whether

the state parameter matches with the state parameter they’ve sent in authentication request. On contrary,

H2020-POWER2DM

POWER2DM • Page 23 of 55

if user denies the client application’s request, user is still redirected to the client application but this time

with proper error message.

For both cases, parameters to be delivered to the client application are added as query parameters to the

URI of the client application using the application/x-www-form-urlencoded format. An example

approved and denied authorization request would be;

HTTP/1.1 302 Found

Location:

 http://app.srdc.com.tr%/power2dm/onauth/sample-smart-client/auth_callb

ack.html?

 code=SplxlOBeZQQYbYS6WxSbI

 &state=af0ifjsldkj

HTTP/1.1 302 Found

Location:

 http://app.srdc.com.tr/power2dm/onauth/onauthmanager/information?

 error=access_denied

 &errorDesc=User+denied+application+access

 &state=af0ifjsldkj

3.2.4 Client Exchanges Code with Token

After getting the authorization code from the query parameters, client application makes a token request

by presenting its authorization grant (in the form of an authorization_code) to the Token Endpoint of

Onauth Server. In addition, clients should provide the same redirect_uri parameter that they used while

performing the authentication request.

Token Endpoint of Onauth Server requires client authentication depending on the type of client which

is making the token request. For public clients (e.g. User-agent based web applications, native mobile

applications), client authentication using client_id and client_secret is not required but they must provide

their client_id as a parameter. But confidential clients (who can store a secret safely) are required to

authenticate themselves using HTTP Basic which is an authentication scheme which is defined at the

Section 2.3.1 of the OAuth 2.0 Authorization Framework14.

Requests to the Token Endpoint is made with HTTP Post request with the required parameters are added

to the body of the request using application/x-www-form-urlencoded format. An example token request

by a confidential and public client application would be;

POST power2dm/onauth/api/token HTTP/1.1

Host: app.srdc.com.tr

Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW

Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code

14 https://tools.ietf.org/html/rfc6749

H2020-POWER2DM

POWER2DM • Page 24 of 55

&code=SplxlOBeZQQYbYS6WxSbIA

&redirect_uri=http%3A%2F%2Fyet.another.secure.server%2Fcb

POST power2dm/onauth/api/token HTTP/1.1 HTTP/1.1

Host: app.srdc.com.tr

Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code

&code=SplxlOBeZQQYbYS6WxSbIA

&client_id=fca8d49c-3f53-4886-8f7c-0cdf8a9d9a09

&redirect_uri=http%3A%2F%2Fapp.srdc.com.tr%2Fpower2dm%2F

 onauth%2Fsample-smart-client%2Fauth_callback.html

3.2.5 Client Receives Token

Upon successful token request, Onauth Server responds with the access token object in JSON format.

Token response contains following fields;

access_token Access token for accessing protected resources. This token can be used for

UserInfo Endpoint and PDS.

Scope Scopes that this access token is authorized for.

id_token See Section 2 in OpenID Connect 1.015 for the details of ID token (JWT token

that contains Claims about the Authentication event for the End user).

refresh_token Refresh token. See offline_access scope at Section 2.1.2.

token_type OAuth 2.0 Token Type16 value. The value is always Bearer.

refresh_token OPTIONAL. This scope value is used to access the UserInfo of patient (only

given_name, family_name, picture, gender, birthdate). Users also may get this

scope with patient/*.*.

expires_in Expiration time of the access token in seconds since the response was

generated.

patient If the patient scope is present at the requested scopes, Onauth Server returns

the patient identifier of patient that this access token is authorized for (If end

user is patient himself, this is his own patient identifier. Otherwise, this is the

patient identifier of the selected patient).

If token request results with an error, then proper error code and error description is returned to the client

application in JSON format. The following is an example for successful token response;

HTTP/1.1 200 OK

Content-Type: application/json

Cache-Control: no-cache, no-store

Pragma: no-cache

{

15 http://openid.net/specs/openid-connect-core-1_0.html
16 https://tools.ietf.org/html/rfc6749

H2020-POWER2DM

POWER2DM • Page 25 of 55

 "access_token": "SlAV32hkKG",

 "token_type": "Bearer",

 "scope": "patient/Observation.write patient/UserInfo.read…",

 "refresh_token": "8cjhj43d5893jic4dg4c22bh10b8i1",

 "expires_in": 3600,

 "id_token": "eyJraWQ....bePk2ob2tJFJ....iZz5Og",

 "patient": "00d545e8-7c86-4c16-84bc-7397f6e8741e"

}

 The following is an example for erroneous token response;

HTTP/1.1 401 Unauthorized

Content-Type: application/json

Cache-Control: no-cache, no-store

Pragma: no-cache

{

 “error”: “invalid_grant”

 “errorDesc”: “Only authorization_code is supported.”

}

3.2.6 Client Uses Token to Access Information

Client applications can use access token received from Onauth Server to access UserInfo Endpoint and

Pds resources by inserting the access token to the authorization header of the HTTP requests. Following

sections exemplify such a request made to the secure endpoints.

3.2.6.1 Client Accesses User Info

An example UserInfo request and response;

GET power2dm/onauth/api/token HTTP/1.1

Host: app.srdc.com.tr

Authorization: Bearer SlAV32hkKG

HTTP/1.1 200 OK

Content-Type: application/json

Cache-Control: no-cache, no-store

Pragma: no-cache

{

 "sub": "294d92b6-7610-40a3-a3f2-44443486d1f2"

 "name": "Martha",

H2020-POWER2DM

POWER2DM • Page 26 of 55

 "surname": "Cook",

 "preferred_username": "martha_cook",

 "pdm_user_type": "patient",

 "care_team”: {

 "care-manager":"cad2a677-bc63-4d19-ae03-545fc872dd33"],

 "care-supporter":],

 "self-care-manager":"36d8b11b-1c68-421d-bc89-cc7a92471e61"],

 "self-care-supporter":[]

 },

 "pdm_organization": "lumc"

}

3.2.6.2 Client Accesses Patient’s User Info

Client applications also can access to the basic profile information of the patient in context (e.g. a

physician authorized the client application for a patient). Following is the example request made to the

token endpoint for a patient;

GET power2dm/onauth/api/userinfo/forbidden_patient HTTP/1.1

Host: app.srdc.com.tr

Authorization: Bearer SlAV32hkKG

Such a request may fail if the client tries to access to a patient profile other than the patient in context.

Following is the example to error response of such a request;

HTTP/1.1 401 Unauthorized

Content-Type: application/json

Cache-Control: no-cache, no-store

Pragma: no-cache

{

 “error”: “access_denied”

 errorDesc”: “Token is not authorized to access this patient.”

}

3.2.6.3 Client Access PDS Resources

PDS checks the reliability of access tokens by introspecting them from Onauth Server. Rather than

reliability, token introspection also gives information to the PDS about the token. For example, even

though a client application tries to run a query on all Observation records, PDS limits the query only to

the patients that the access token is authorized for. Following is such a search request and response for

Observation records;

GET /power2dm/pds-secure/Observation

Host: app.srdc.com.tr

H2020-POWER2DM

POWER2DM • Page 27 of 55

Authorization: Bearer SlAV32hkKG

HTTP/1.1 200 OK

Content-Type: application/json

{

 "resourceType": "Bundle",

 "id": "ffc3a75a-32a5-435a-9597-e2c8c7b64c95",

 "type": "searchset",

 "total": 1,

 "link": [

 {

 "relation": "self",

 "url": "http://app.srdc.com.tr/power2dm/pds-secure/Observation?patie

nt=00d545e8-7c86-4c16-84bc-7397f6e8741e"

 }

],

 "entry": [

 {

 "fullUrl": "http://app.srdc.com.tr/power2dm/pds-secure/Observation/14

a94454-410a-4e93-8ee5-691460c7bba5",

 "resource": {

 "resourceType": "Observation"…

 }

 }

]

}

3.2.7 Refreshing Access Tokens

Client applications can use the expires_in field from the authorization response to determine when its

access token will expire. After an access token expires, it may be possible to request an updated token

without user intervention, if the app asked for a refresh token via the offline_access scope and the server

supplied a refresh_token in the authorization response. To obtain a new access token, the app issues an

HTTP POST to the Token Endpoint, with content-type application/x-www-form-urlencoded

For confidential clients, an Authorization header using HTTP Basic authentication is required, where

the username is the app’s client_id and the password is the app’s client_secret. For public clients,

authentication is not possible (and thus not required) but client_id must be provided.

Client makes a Token Request by presenting its Authorization Grant (in the form of an Refresh Token)

to the Token Endpoint using the refresh_token value for grant_type parameter with refresh_token value.

In addition, scope parameter could also be defined and if present, scope value must be a strict sub-set of

H2020-POWER2DM

POWER2DM • Page 28 of 55

the scopes granted in the original request (no new permissions can be obtained at refresh time). A

missing value indicates a request for the same scopes which are granted in the original request.

The following is a non-normative example of a Token Request made by confidential client (with line

wraps for the display purposes only):

 POST power2dm/onauth/api/token HTTP/1.1

 Host: app.srdc.com.tr

 Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW

 Content-Type: application/x-www-form-urlencoded

 grant_type=refresh_token

 &refresh_token=8cjhj43d5893jic4dg4c22bh10b8i1

The following is a non-normative example of a Token Request made by public client (with line wraps

for the display purposes only):

 POST power2dm/onauth/api/token HTTP/1.1

 Host: app.srdc.com.tr

 Content-Type: application/x-www-form-urlencoded

 grant_type=refresh_token

 &refresh_token=8cjhj43d5893jic4dg4c22bh10b8i1

 &client_id=fca8d49c-3f53-4886-8f7c-0cdf8a9d9a09

A successful refresh_token response is same with the access_token response except id_token may not

be present at the body. If a new refresh token is present at the response, clients should replace the old

refresh token with the new one.

3.2.8 Authorization with Client Credentials

POWER2DM also has some applications (confidential clients) that require access to the private

information but have not any UI elements (i.e. Communication Engine). Such client applications may

request access tokens by authenticating themselves with HTTP Basic scheme. To obtain an access token

using client credentials, client makes a request to the Token Endpoint using client_credentials value for

the grant_type parameter. Only certain clients are given such scope. The following is an example of

such a token request and response;

POST power2dm /onauth/api/token

Host: app.srdc.com.tr

Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW

grant_type=client_credentials

&scope=fhir/patient

HTTP/1.1 200 OK

H2020-POWER2DM

POWER2DM • Page 29 of 55

Cache-Control: no-cache, no-store

Pragma: no-cache

{

 "access_token": "jfieej3hic5gj55ai50cded6ag3b5j",

 "token_type": "Bearer",

 "scope": [

 "fhir/patient"

],

 "expires_in": 3600

}

3.3 Auditing

Audit Server implements FHIR STU3 (3.0.1) specification17 for FHIR Create, Read, VRead, History

and Search operations for FHIR Audit Event resource type18. POWER2DM PDS uses “FHIR Create”

service to send the audits for each data access/update to PDS. Onauth Server generates and send audits

for user authentications. The following record shows a PDS generated audit for a query to PDS.

AuditEvent records basically includes the following information;

• Type of event (type, subtype): This gives the type of event that audit is generated for. The given

example indicates that the audit is for a FHIR search event (data search).

• Time of event (recorded)

• Outcome of event (outcome, outcomeDesc): Indicates whether the operation is successful or not.

e.g. If search operation is successfully completed

• Agents of the event (agent): This defines the parties (applications) that performs the operation.

In this example, it is seen that the search is performed from a specific IP address (95.9.71.171) by the

practitioner given with id (4b19f8a6-9f3f-40c0-988f-2e7894ee7416). The other agent is the performed of the

search which is the PDS itself.

• Entity of the event (entity): This part provides the entities that the operation is performed on. In

the example, the first one indicates the search is performed for Patient with id (7fd4c6c5-9aa3-4bb1-

9bd0-33d4e7ebdabf) and the second entity provides the query (encoded in Base64) that is performed

on Observations of patient.

{
 "resourceType": "AuditEvent",

 "type": {

 "system": "http://hl7.org/fhir/audit-event-type",

 "code": "rest"

 },

 "subtype": [

 {

 "system": "http://hl7.org/fhir/restful-interaction",

 "code": "search-type"

 }

],

 "action": "R",

 "recorded": "2017-10-25T14:10:42.535+03:00",

 "outcome": "0",

 "outcomeDesc": "200 OK: OK",

 "agent": [

17 http://hl7.org/fhir/index.html
18 http://hl7.org/fhir/auditevent.html

http://hl7.org/fhir/index.html
http://hl7.org/fhir/auditevent.html

H2020-POWER2DM

POWER2DM • Page 30 of 55

 {

 "role": [

 {

 "coding": [

 {

 "system" : "http://nema.org/dicom/dicm",

 "code" : "110153"

 }

]

 }

],

 "requestor": true,

 "network": {

 "address": "95.9.71.171",

 "type": "2"

 },

 "reference": {

 "reference": "Practitioner/4b19f8a6-9f3f-40c0-988f-2e7894ee7416"

 }

 },

 {

 "role": [

 {

 "coding": [

 {

 "system": "http://nema.org/dicom/dicm",

 "code": "110152"

 }

]

 }

],

 "name": "POWER2DM Personal Health Data Store",

 "requestor": false,

 "network": {

 "address": "http://127.0.0.1:8080/pds",

 "type": "2"

 }

 }

],

 "source": {

 "identifier": {

 "value": "http://127.0.0.1:8080/pds"

 }

 },

 "entity": [

 {

 "type": {

 "system": "http://hl7.org/fhir/audit-entity-type",

 "code": "1"

 },

 "role": {

 "system": "http://hl7.org/fhir/object-role",

 "code": "1"

 },

 "reference": { "reference": "Patient/7fd4c6c5-9aa3-4bb1-9bd0-33d4e7ebdabf"}

 },

 {

 "type": {

 "system": "http://hl7.org/fhir/resource-types",

 "code": "Observation"

 },

 "role": {

 "system": "http://hl7.org/fhir/object-role",

 "code": "24"

 },

 "query": "aHR0cDovLzEyNy4wLjAuMTo4MDgwL3Bkcy9QYXRpZW50"

 }

]

}

H2020-POWER2DM

POWER2DM • Page 31 of 55

4 Demonstration of Functionalities

Onauth Server and Onauth Manager are deployed on our cloud for demonstration and for testing

environment for other partners. Onauth Server is accessible on

http://app.srdc.com.tr/power2dm/onauth/api and Onauth Manager is accessible on

http://app.srdc.com.tr/power2dm/onauth/onauth-manager.

4.1 Authorization & Authentication

This section demonstrates the example OpenID Connect Authorization Code Flow19 using the

Onauth Manager and a sample client application which is developed only for demonstration purposes

and to be an example for other POWER2DM components. You can access the sample client which is

deployed for demonstration purposes on http://app.srdc.com.tr/power2dm/onauth/sample-smart-client.

4.1.1 Single Sign On

When you open the sample client, first screen you will see is the “Initiate Authorization” button with

some explanations;

Figure 2 Client sends authorization request

Clicking “Initiate Authorization” button will send authorization request to the authorize endpoint of

Onauth Server as explained in Section 3.2.1.1. On successful request, Onauth Server redirects user to

the log in page of the Onauth Manager.

Username/Password authentication is the default authentication mechanism for all users. However, users

can select another alternative which is 2-factor authentication in which case they should also register

their phone number to their account. If that is the case, after confirming username and password, Onauth

server sends a verification code via SMS to the user and user is expected to enter this code in the next

step.

19 http://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth

http://app.srdc.com.tr/power2dm/onauth/api
http://app.srdc.com.tr/power2dm/onauth/onauth-manager
http://app.srdc.com.tr/power2dm/onauth/sample-smart-client

H2020-POWER2DM

POWER2DM • Page 32 of 55

Figure 3 User is redirected to Sign In page

4.1.2 User Consent

Upon successful sign on, user is redirected to the consent page where he/she is asked to authorize the

client to act on behalf of him/her as shown in Figure 4. Here the user can check the registered data for

client and which data client will access to on behalf of him.

Figure 4 User is asked for consent

In the next step, if user is not a patient, he/she is asked to select a patient to set the authorization context

to a specific patient. In other words, the Shared Decision-Making Application, used by care providers

never access to the identity data of patients as the patient selection is done via the patient selection screen

as shown in Figure 5 internally.

H2020-POWER2DM

POWER2DM • Page 33 of 55

Figure 5 User selects patient

4.1.3 Requests with Sample Client

After user approved the client, he/she is directed back to the client with the code and client exchanges

code for an access token as explained in Section 2.2.1.3. Below, Figure 6, is the snapshot of sample

client after exchanging code with the token;

Figure 6 Client exchanges code for token

Having an access token, client can make requests to the secure endpoints by passing access token in

authorization header. You can find example requests below in Figure 7 and Figure 8.

H2020-POWER2DM

POWER2DM • Page 34 of 55

Figure 7 Client fetches user info

Figure 8 Client fetches patient's observations

4.2 Onauth Manager

4.2.1 Home Screen

4.2.1.1 Patient

Patient home screen consists of four different components (see Figure 9);

• Component-1: List of approved applications of the user; users can view details of each approved

client and remove their approval.

• Component-2: Basic profile information of the user.

• Component-3: List of devices or 3rd party data providers that user may authorize POWER2DM

to access patient’s own data; users can authorize/deny POWER2DM for the device/application.

• Component-4: Care team of the user; user may modify the care team based on his/her

permissions, but he cannot unassign care managers.

H2020-POWER2DM

POWER2DM • Page 35 of 55

Figure 9 Patient home screen

4.2.1.2 Care Provider

Home screen for care provider consists of 3 different components (see Figure 10);

• Component-1: List of patients which the user is authorized for; user may switch between patients

to see the details.

• Component-2: Basic profile information of the selected patient.

• Component-3: Care team of the selected patient; user may modify patient’s care team based on

his/her permissions. He can add new care managers or care supporters.

Figure 10 Care Provider home screen

H2020-POWER2DM

POWER2DM • Page 36 of 55

4.2.2 Policy Management

Patients can create several policies of their own by extending the base policy defined for POWER2DM.

Policy management screen contains a table where each column represents a functional role, each row

represents a resource set and intersection of a row and column represents that role’s permission for the

resource set. In addition, patients also can apply, delete and update an existing policy. Rules that are

marked as locked couldn’t be modified by the patients.

Figure 11 Policy management screen

Although, this interface provides detailed policy management to patient, after discussions with piloting

partners, it is decided to go with a single POWER2DM access control policy that simplifies the

procedure and POWER2DM care which will be defined by POWER2DM realm manager from the same

interface.

4.2.3 User Registration

Users can register new users if they have permission for user registration by using the user registration

form provided by this screen. Type of user and permissions that newly registered user will get are

dependent on the roles are set during registration process. Below, you can find an example patient

registration performed by a practitioner;

H2020-POWER2DM

POWER2DM • Page 37 of 55

Figure 12 Patient Registration form

Upon successful registration, practitioner who registered this new patient with username

“example_new_user” is added to the care team of the newly registered patient.

4.2.4 Client Registration

In order to use OpenID Connect 1.0 endpoints defined in this document, clients should be registered to

Onauth Server. Users can register a new client or modify an existing client application using the client

registration form provided by this screen;

H2020-POWER2DM

POWER2DM • Page 38 of 55

Figure 13 Client registration menu

Figure 14 Registration form for clients

Upon successful registration, users are prompted with new screen that shows the credentials of the newly

registered client;

H2020-POWER2DM

POWER2DM • Page 39 of 55

Figure 15 Successful client registration

4.2.5 Audit Viewer

Patients can see audit records about them from the audit viewer as shown in Figure 16. Audit viewer

lists audit records on a table and patients can view details of any record by selecting it from table.

Records on the table could be filtered by using the filters defined on the left-hand side of the screen.

Figure 16 Audit view for patients

H2020-POWER2DM

POWER2DM • Page 40 of 55

Figure 17 Patient audit detail

5 Appendices

5.1 Appendix A – POWER2DM Privacy Policy

{

 "id": "power2dm_privacy_policy",

 "name": "Default SRDC onFHIR privacy policy",

 "description": "Simple privacy policy for testing purposes",

 "authorId": "power2dm_admin",

 "lastUpdateTime": "2017-04-04T20:30:30Z",

 "resourceSetId": "sample-resource-set-Id",

 "realm_id": "power2dm",

 "patient_access": "care_team",

 "isBase": true,

 "isActive": true,

 "rules": {

 "Patient": {

 "care-manager": {

 "read": 1

 },

 "care-supporter": {

H2020-POWER2DM

POWER2DM • Page 41 of 55

 "read": 1

 },

 "self-care-manager": {

 "read": 1

 },

 "self-care-supporter": {

 "read": 1

 }

 },

 "Device": {

 "care-manager": {

 "read": 1

 },

 "care-supporter": {

 "read": 1

 },

 "self-care-manager": {

 "write": 1

 },

 "self-care-supporter": {

 "read": 1

 }

 },

 "Composition": {

 "care-manager": {

 "write": 1

 },

 "care-supporter": {

 "read": 1

 },

 "self-care-manager": {

 "read": 1

 }

 },

 "Condition": {

 "care-manager": {

 "write": 1

H2020-POWER2DM

POWER2DM • Page 42 of 55

 },

 "care-supporter": {

 "read": 1

 },

 "self-care-manager": {

 "write": 1

 }

 },

 "Goal": {

 "care-manager": {

 "write": 1

 },

 "care-supporter": {

 "read": 1

 },

 "self-care-manager": {

 "write": 1

 },

 "self-care-supporter": {

 "read": 1

 }

 },

 "ProcedureRequest": {

 "care-manager": {

 "write": 1

 },

 "care-supporter": {

 "read": 1

 },

 "self-care-manager": {

 "write": 1

 },

 "self-care-supporter": {

 "read": 1

 }

 },

 "MedicationOrder": {

H2020-POWER2DM

POWER2DM • Page 43 of 55

 "care-manager": {

 "write": 1

 },

 "care-supporter": {

 "read": 1

 },

 "self-care-manager": {

 "read": 1

 },

 "self-care-supporter": {

 "read": 1

 }

 },

 "Appointment": {

 "care-manager": {

 "write": 1

 },

 "care-supporter": {

 "write": 1

 },

 "self-care-manager": {

 "write": 1

 },

 "self-care-supporter": {

 "read": 1

 }

 },

 "Encounter": {

 "care-manager": {

 "write": 1

 },

 "care-supporter": {

 "read": 1

 },

 "self-care-manager": {

 "read": 1

 }

H2020-POWER2DM

POWER2DM • Page 44 of 55

 },

 "Observation": {

 "care-manager": {

 "write": 1

 },

 "care-supporter": {

 "read": 1

 },

 "self-care-manager": {

 "write": 1

 },

 "self-care-supporter": {

 "read": 1

 }

 },

 "Procedure": {

 "care-manager": {

 "write": 1

 },

 "care-supporter": {

 "read": 1

 },

 "self-care-manager": {

 "write": 1

 },

 "self-care-supporter": {

 "read": 1

 }

 },

 "RiskAssessment": {

 "care-manager": {

 "write": 1

 },

 "care-supporter": {

 "read": 1

 },

 "self-care-manager": {

H2020-POWER2DM

POWER2DM • Page 45 of 55

 "read": 1

 },

 "self-care-supporter": {

 "read": 1

 }

 },

 "QuestionnaireResponse": {

 "care-manager": {

 "write": 1

 },

 "care-supporter": {

 "read": 1

 },

 "self-care-manager": {

 "write": 1

 }

 },

 "MedicationAdministration": {

 "care-manager": {

 "read": 1

 },

 "care-supporter": {

 "read": 1

 },

 "self-care-manager": {

 "write": 1

 },

 "self-care-supporter": {

 "read": 1

 }

 },

 "Order": {

 "care-manager": {

 "write": 1

 },

 "care-supporter": {

 "read": 1

H2020-POWER2DM

POWER2DM • Page 46 of 55

 },

 "self-care-manager": {

 "read": 1

 }

 },

 "OrderResponse": {

 "care-manager": {

 "write": 1

 },

 "care-supporter": {

 "read": 1

 },

 "self-care-manager": {

 "read": 1

 }

 },

 "CommunicationRequest": {

 "care-manager": {

 "read": 1

 },

 "care-supporter": {

 "read": 1

 },

 "self-care-manager": {

 "write": 1

 }

 },

 "Basic": {

 "care-manager": {

 "read": 1

 },

 "care-supporter": {

 "read": 1

 },

 "self-care-manager": {

 "write": 1

H2020-POWER2DM

POWER2DM • Page 47 of 55

 }

 },

 "careteam/self-care-supporter": {

 "care-manager": {

 "read": 1,

 "isSmartScope": false

 },

 "care-supporter": {

 "read": 1,

 "isSmartScope": false

 },

 "self-care-manager": {

 "write": 1,

 "isSmartScope": false

 },

 "self-care-supporter": {

 "read": 1,

 "isSmartScope": false

 }

 },

 "careteam/care-manager": {

 "care-manager": {

 "write": 1,

 "isSmartScope": false

 },

 "care-supporter": {

 "write": 1,

 "isSmartScope": false

 },

 "self-care-manager": {

 "read": 1,

 "isSmartScope": false

 },

 "self-care-supporter": {

 "read": 1,

 "isSmartScope": false

 }

H2020-POWER2DM

POWER2DM • Page 48 of 55

 },

 "careteam/care-supporter": {

 "care-manager": {

 "write": 1,

 "isSmartScope": false

 },

 "care-supporter": {

 "write": 1,

 "isSmartScope": false

 },

 "self-care-manager": {

 "read": 1,

 "isSmartScope": false

 },

 "self-care-supporter": {

 "read": 1,

 "isSmartScope": false

 }

 },

 "Practitioner": {

 "care-manager": {

 "read": 1

 },

 "care-supporter": {

 "read": 1

 },

 "self-care-manager": {

 "read": 1

 },

 "self-care-supporter": {

 "read": 1

 },

 "group_admin": {

 "read": 1

 },

 "client_admin": {

 "read": 1

H2020-POWER2DM

POWER2DM • Page 49 of 55

 },

 "realm_admin": {

 "write": 1

 }

 },

 "Organization": {

 "care-manager": {

 "read": 1

 },

 "care-supporter": {

 "read": 1

 },

 "self-care-manager": {

 "read": 1

 },

 "self-care-supporter": {

 "read": 1

 },

 "group_admin": {

 "read": 1

 },

 "client_admin": {

 "read": 1

 },

 "realm_admin": {

 "write": 1

 }

 },

 "Medication": {

 "care-manager": {

 "read": 1

 },

 "care-supporter": {

 "read": 1

 },

 "self-care-manager": {

 "read": 1

H2020-POWER2DM

POWER2DM • Page 50 of 55

 },

 "self-care-supporter": {

 "read": 1

 },

 "group_admin": {

 "read": 1

 },

 "client_admin": {

 "read": 1

 },

 "realm_admin": {

 "write": 1

 }

 },

 "Parameters": {

 "care-manager": {

 "read": 1

 },

 "care-supporter": {

 "read": 1

 },

 "self-care-manager": {

 "read": 1

 },

 "self-care-supporter": {

 "read": 1

 },

 "group_admin": {

 "read": 1

 },

 "client_admin": {

 "read": 1

 },

 "realm_admin": {

 "write": 1

 }

 },

H2020-POWER2DM

POWER2DM • Page 51 of 55

 "Conformance": {

 "care-manager": {

 "read": 1

 },

 "care-supporter": {

 "read": 1

 },

 "self-care-manager": {

 "read": 1

 },

 "self-care-supporter": {

 "read": 1

 },

 "group_admin": {

 "read": 1

 },

 "client_admin": {

 "read": 1

 },

 "realm_admin": {

 "write": 1

 }

 },

 "StructureDefinition": {

 "care-manager": {

 "read": 1

 },

 "care-supporter": {

 "read": 1

 },

 "self-care-manager": {

 "read": 1

 },

 "self-care-supporter": {

 "read": 1

 },

H2020-POWER2DM

POWER2DM • Page 52 of 55

 "group_admin": {

 "read": 1

 },

 "client_admin": {

 "read": 1

 },

 "realm_admin": {

 "write": 1

 }

 },

 "SearchParameter": {

 "care-manager": {

 "read": 1

 },

 "care-supporter": {

 "read": 1

 },

 "self-care-manager": {

 "read": 1

 },

 "self-care-supporter": {

 "read": 1

 },

 "group_admin": {

 "read": 1

 },

 "client_admin": {

 "read": 1

 },

 "realm_admin": {

 "write": 1

 }

 },

 "ValueSet": {

 "care-manager": {

H2020-POWER2DM

POWER2DM • Page 53 of 55

 "read": 1

 },

 "care-supporter": {

 "read": 1

 },

 "self-care-manager": {

 "read": 1

 },

 "self-care-supporter": {

 "read": 1

 },

 "group_admin": {

 "read": 1

 },

 "client_admin": {

 "read": 1

 },

 "realm_admin": {

 "write": 1

 }

 },

 "AuditEvent": {

 "realm_admin": {

 "read": 1

 },

 "self-care-manager": {

 "read": 1

 }

 },

 "UserInfo": {

 "group_admin": {

 "read": 1

 },

 "care-manager": {

 "read": 1

 },

 "care-supporter": {

H2020-POWER2DM

POWER2DM • Page 54 of 55

 "read": 1

 },

 "self-care-manager": {

 "read": 1

 }

 },

 "user_registration/patient": {

 "practitioner": {

 "isSmartScope": false

 },

 "group_admin": {

 "isSmartScope": false

 }

 },

 "list_users/practitioner": {

 "group_admin": {

 "isSmartScope": false

 },

 "practitioner": {

 "isSmartScope": false

 },

 "nurse": {

 "isSmartScope": false

 }

 },

 "list_users/nurse": {

 "group_admin": {

 "isSmartScope": false

 },

 "practitioner": {

 "isSmartScope": false

 },

 "nurse": {

 "isSmartScope": false

 }

 },

 "list_users/patient": {

H2020-POWER2DM

POWER2DM • Page 55 of 55

 "group_admin": {

 "isSmartScope": false

 },

 "practitioner": {

 "isSmartScope": false

 },

 "nurse": {

 "isSmartScope": false

 },

 "patient": {

 "isSmartScope": false

 }

 },

 "user_registration/practitioner": {

 "group_admin": {

 "isSmartScope": false

 }

 },

 "user_registration/nurse": {

 "group_admin": {

 "isSmartScope": false

 }

 }

 }

}

