POWER

POWER2DM

“Predictive model-based decision support for diabetes patient
empowerment”

Research and Innovation Project
PHC 28 — 2015: Self-management of health and disease and decision support systems
based on predictive computer modelling used by the patient him or herself

POWER2DM D4.10 (or D4.6.1b)
Privacy/Security Enablers for POWER2DM Services I|

Due Date: 31.10.2017
Actual Submission Date: 31.10.2017
Project Dates: Project Start Date: February 01, 2016

Project End Date: July 31, 2019
Project Duration: 42 months
Deliverable Leader: SRDC

Project co-funded by the European Commission within H2020 Programme (20015-2016)

Dissemination Level

PU Public

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)
CO

Confidential, only for members of the consortium (including the Commission Services)




H2020-POWER2DM

Document History:

Version | Date Changes From Review

0.1 06.10.2017 Initial VVersion (Section 3) SRDC

0.2 13.10.2017 Section 4 Demonstration of functionalities | SRDC

0.3 23.10.2017 Update the summary section (Section 2) SRDC

1.0 30.10.2017 Latest compiled version SRDC ALL
Contributors (Benef.) Tuncay Namli (SRDC)

Ozan Kose(SRDC)

Responsible Author ~ Tuncay Naml Email tuncay@srdc.com.tr

POWER2DM - Page 2 of 55




H2020-POWER2DM

POWER2DM Consortium Partners

Participant Organization Name Country
TNO Nederlandse Organisatie voor Toegepast | Netherlands
Natuurwetenschappelijk Onderzoek
IDK Institute of Diabetes “Gerhardt Katsch” Karlsburg Germany
SRDC SRDC Yazilim Arastirma ve Gelistirme ve Danismanlik Ticaret | Turkey
Limited Sirketi
LUMC Leiden University Medical Center Netherlands
SAS SAS Servicio Andaluz de Salud Spain
SRFG Salzburg Research Forschungs Gesellschaft Austria
PD PrimeData Netherlands
iHealth iHealth EU France

POWER2DM - Page 3 of 55



H2020-POWER2DM

Table of Contents
QLI L0] Lo 0] 1 (=10 PR 4
1 INEFOTUCTION 1.ttt bbb bbbttt b bbb e e 5
11 PUIDOSE & SCOPE ...veeeenteiieeee sttt sttt r e r e r e r e r e bt r e ennesr e e e sreen e e nnenreennenne e 5
1.2 RETEIBNCES ...ttt bbbt bbbttt bbb n e 5
2 Summary of Privacy and Security MeChaniSMS..........cccvriiiieieiiiess e 5
2.1 Summary of Information Collection and USE ...........cceciiiiiiiiiie i 5
2.2 1AENLITICATION OF USEIS ..ottt sttt st e te e seeenes 6
2.3 AUTNENTICALION ...ttt bbbttt e bbb b b 7
2.4 Authorization and ACCESS CONEIOL........ccviieiiiiee e 7
2.5  COMMUNICALION SECUNILY .....iiviiiiiiiii ettt ste ettt re s te e b e s beera e besre e e e steeneesreenes 8
2.8 AUDITING ..ttt E bbbttt ren e 8
3 Summary of IMPIEMENTALION .......ccviiiiie e st re e sreens 8
TR R O 1= 101 ST - SRRSO S PR PO 9
3.11 Configuring Onauth Server for POWERZDM ........cccoooiiiiiiiieieeeeee s 9
3.1.2 SCOPE VAIUBS ...ttt ettt sttt e s be e et e s be et e steenbesbeenaesrenre s 11
3.1.3 O =T O = T USSR 12
3.14 USEI REGISIIALION .....cvviiiiiic et st be e ste s te e b s re e nee e 13
3.15 ClHENt REGISIIATION.......iitite et b e 17
3.2 Authentication & AUNOMZATION .........ccviiiiiiieieee e 20
321 Client Sends AuthentiCation REQUEST ..........cceriirieieiiiiinise e 21
3.2.2 ENd User AULhENTICALION ........ocverieieieicecece e 22
3.2.3 ClIENt RECEIVES COUE .....oeviivieiie ettt sttt sre e saeeraenenne s 22
3.24 Client Exchanges Code With TOKEN ........coviiiiiiiiiicc e e 23
3.25 ClieNt RECEIVES TOKEN.....cui ettt sttt era e nne s 24
3.2.6 Client Uses Token to AcCess INFOrmation..........ccoveveieiniine e 25
3.2.7 Refreshing ACCESS TOKENS .......couiiiiiiiiie e 27
3.2.8 Authorization with Client CredentialS..........cccvvveriviiereie e 28
KT T N0 To 1 112 To F RSP SRSPSTOSPN 29
4 Demonstration Of FUNCLIONAIITIES ........ccviiiiiiiee et sne s 31
4.1  Authorization & AULNENTICATION .........ociiiiiiiie e e 31
411 SINGIE STPN ONlci e bbb 31
4.1.2 (0 LT O o]0 1] o | TP PP U PPPRTOUROTROT 32
4.1.3 Requests With SAMpPIe CHENT..........cociie e 33
A © T TN {1 1Y, = To T S 34
4.2.1 [ (010 LI Tod 1= [PPSR 34
4.2.2 POLICY MaNAGEMENT .......eiiiiiie ettt st sae s e eesre e e e nee e 36
4.2.3 USEI REGISTIATION ...ttt 36
4.2.4 (O 1= o T 1 =1 o o S 37

POWER2DM - Page 4 of 55



H2020-POWER2DM

4.25 AN (o 1) Y 4 1= T PSS 39
I AN o] 0 =1 oo oY SO 40
51  Appendix A —POWER2DM Privacy POlICY.......cccccveiiiiiiiiie st 40

1 Introduction

1.1 Purpose & Scope

The purpose of deliverable D4.10 is to provide final privacy and security mechanisms applied in
POWER2DM system as well as to demonstrate them. This covers the authentication, authorization,
auditing and other security mechanisms to protect the security and privacy of patients’ medical and
identity data. POWER2DM will consist of several services that exchange patient’s data among them
and visualize them to the users (practitioners and patient) in several phases. In order to ensure strict
privacy and security requirements, they should implement certain processes and cryptographic protocol
based on the specified security and privacy policies. This deliverable will enable these common
mechanisms (enablers) and define how the software specifications and standards are implemented.

D4.9 provides an initial overview of the architecture and specifications/standards used to provide the
security and privacy mechanisms. This deliverable, D4.10 focuses on implementation details and
demonstration of functionalities. On the other hand, within the project, some of the requirements
changed due to requests from piloting partners and therefore we have updated some mechanisms (e.g.
Section 2.2 User identification). Therefore, in Section 2, we provide a new summary of the privacy and
security mechanisms to be applied in POWER2DM (Updated version of same section in D4.9). Section
Error! Reference source not found. provides further details of the implementation of sub components
and Section 4 provides shapshots and demonstration of the functionality provided by the Core Services
component.

1.2 References

e DA4.9 (D4.6.1a) Privacy Security Enablers |
o D1.3 Conceptual Design

2 Summary of Privacy and Security Mechanisms

2.1 Summary of Information Collection and Use

POWER2DM SMSS collects a range of information about patients to evaluate the medical, contextual
and psychological situation of the patient to provide the necessary self-management support for patient
and support the care management process in shared-decision making encounters. Although, the details
of the information to be collected in POWER2DM Care Program will be provided in D5.3
“POWER2DM Evaluation Campaign Protocol “, anyone can consult the D4.1 “Personal Data Model
and Service API” to understand the general coverage. In this section, the following list shows the
categorization of information collection in terms of security and privacy perspective;

e User ldentity Data: After the discussions with piloting partners, the decision was to limit the
identity data to be collected from patient as far as possible. The only identity data elements are
as follows;

o email: This is required due to management of patient account (e.g. password lost, etc)
and used to be a username for patient

POWER2DM - Page 5 of 55



H2020-POWER2DM

Personal Lifestyle and Health Data: This is the set of personal health records collected via
medical devices, collected from patient via POWER2DM SMSS Applications or 3™ party
lifestyle applications, and data entries of care providers during shared-decision making. This
includes daily observations, clinical test results, problems, barriers, goals, etc. This set also
includes the following information; which can be considered as identity data but not provide
much information about the identity of patient within the POWER2DM patient population.

o age: Age is required in POWER2DM risk score calculation algorithms and also for
POWER2DM care and collected as a birth year instead of whole birth date to preserve
privacy.

o gender: Gender is required in POWER2DM risk score calculation algorithms and also
within POWER2DM care program

o ethnicity:_Ethnicity is required for POWERDM'’s risk score calculation algorithms

All these data will be protected separately from patient’s main identity data (email and the study
number) and maintained in pseudynomized way.

Application Usage Behaviour and Contextual Data: This is the set of analytic information
related with how patient use the POWER2DM SMSS applications and how they react to
interventions, as well as the contextual data like location (home, office, etc.), interruptibility,
activity (walking, transportation, etc.) that can be derived from the on-board mobile phone
Sensors.

Patient Consent, Privacy Policies and Auditing Data: This is the set of privacy policies and
consent authored by patient and the audit logs describing all the operations done in
POWER2DM (e.g. accessing to data, login to application, updating data, etc)

In terms of information sharing and disclosure, POWER2DM have the following general policy for
these categories;

2.2

For “User Account/ldentity Data”, the default POWER2DM policy is to disclose the
information to only the owner (patient). The information is only used for authentication and
account management mechanisms.

For “Personal Lifestyle and Health Data”, the information is disclosed only to authorized
users according to the specified privacy policy in POWER2DM. Mostly the information is used
by the POWER2DM SMSS to display the content back to the patient himself or perform some
analytics/algorithms to make some deductions and make actions accordingly (interventions;
reminders, motivations, etc.). On the other side, information is also used to support the shared-
decision making process for diabetes care management. Therefore, to assure the realization of
POWER2DM care process needs at least some permission for the corresponding care providers.
Conflicting rules that will prevent the realization of POWER2DM care process will not be
allowed.

For “Application Usage Behaviour and Contextual Data”, the information is only used by
POWER2DM SMSS internally and will not be disclosed to any user other than patient
himself/herself. The SMSS use the information in its internal algorithms and decision flows.

Identification of Users

Identification of users (patients and care providers) and systems involved in the POWER2DM processes
is important in terms of privacy and security.

For patient identification, POWER2DM will manage the following identifiers:

Study Number: This is the identifier assigned to the patient by the practitioner while registering
patient to the system. Similarly, the identifier will be used by practitioners to identify and
confirm patient is the right patient. This is bound to the user account data (email) in Core
Service. Study number will not be disclosed to any client, and will only be used during patient
selection procedure where practitioner select the patient among all his/her patients.

POWER2DM - Page 6 of 55



H2020-POWER2DM

e Pseudonymized data store identifier: This is the random unique identifier assigned to patient
by Personal Data Store (PDS). PDS share this value with Core Service during patient
registration and Core Service maps this value to patient’s identity data (email, study number)
internally. Core Service embed this value (encrypted) into access tokens in authorization process
and when the client uses the access token to access the resources in PDS, PDS use the value to
match to the correct patient’s records.

For care providers, there will be random unique identifier assigned by PDS and this will be bound to
care provider’s identity data in Core Services.

2.3 Authentication

POWER2DM deals with both user authentication and client authentication.

For user authentication, OpenID Connect 1.0' protocol will be implemented where the “Core Services”
component will provide the protocol’s endpoints (Authorization Endpoint, etc. see Section Error!
Reference source not found. for details) and web application (single sign-on page) to authenticate the
user. POWER2DM front end components will use the endpoints provided by the Core Service to be sure
that the user is authenticated. User authentication is done by username and password in default, however,
users can select 2-factor authentication via SMS to their mobile phone in addition to username/password.

For client (system) authentication, only Confidential Clients are authenticated (as it is theoretically
impossible to authenticate Public Clients) and SSL client authentication with x509 certificates will
be used. For each component, an X509 certificate will be generated which is signed by a root
POWER2DM certificate.

2.4 Authorization and Access Control

In POWER2DM, there will be two types of data access;
i. aclient system accessing on behalf of a user to a specific patient’s data
a. (Public Client)

i. e.g. POWER2DM Shared-decision Making Web Application accessing directly
to PDS for patient’s personal records on behalf of a care provider to visualize
the data to care-provider

ii. e.g. POWER2DM SMSS Mobile App accessing PDS on behalf of patient
himself/herself
b. (Confidential Client) e.g. POWER2DM Action Plan Engine accessing the records of
patient on behalf of him/her to analyse them and provide feedback to patient for his
performance in the weekly review of action plan
ii.  aconfidential client accessing data for internal analysis and algorithm execution
a. POWER2DM Communication Engine accessing the data of each patient
(anonymously) to perform daily analytics to plan for the interventions

For the first alternative (data access on behalf of a user), a delegated access control mechanism will
be implemented in POWER2DM. Access control mechanism will be based on “Role Based Access
Control” where the policy can allow or deny access of a specific role in granularity of record types
(e.g. Blood Glucose Measurements, Goals, Personal Values, etc.). The role and record type hierarchies
will be defined in line with the record types stored in PDS and the implementations will be configurable
in terms of new role or record type definitions. For POWER2DM pilots, privacy policy will be as follows
(more details will be given in Section 3);

1 http://openid.net/specs/openid-connect-core-1_0.html

POWER2DM - Page 7 of 55


http://openid.net/specs/openid-connect-core-1_0.html

H2020-POWER2DM

e Users who has assigned to “care manager” or ‘“care supporter” role (during patient
registration) for the patient can access the Personal Lifestyle and Health Data of the patient

e Patient himself having assigned to “self care manager” can access all his own data.

e Patient may assign “self care supporter” role to anyone (friends or relatives) and these users
can see the patient Personal Lifestyle and Health Data

Core Services component will provide an OAuth 2.02 complaint Authorization Service to manage the
authorization requests and map the decisions from PDP to permissions (OAuth scopes) bound to the
issued access token (JWT token) to the client. The PDS will verify the access token and decide on the
authorization decision based on the bound permissions (scopes).

For the second alternative, specified Confidential Clients (POWER2DM Backend components) will be
authorized to access all the data as they can reach only to pseudonymised data and cannot identify
whose records are they.

2.5 Communication Security

Communication among POWER2DM backend components (which can be deployed on different
machines) will be protected by TLS v1.2* protocol with mutual authentication. The implementations
will conform to the IHE Audit Trail and Node Authentication (ATNA)* specification.

Communication between a POWER2DM frontend component and POWER2DM backend component
will be protected by TLS v1.2 protocol.

2.6 Auditing

Auditing is an important concept for non-repudiation and being transparent to patients who are accessing
his/her personal health data. For the auditing mechanism, FHIR compliant auditing mechanism will be
built in which all audits are stored in a secure audit repository by the FHIR Audit Event format by FHIR
services. Personal Data Store and Core Services will log all the access requests and data disclosures in
this repository.

In addition, a web interface will be provided for patient to show the list of accesses to his/her personal
health records.

3 Summary of Implementation

POWER2DM security and privacy management architecture consists of three main sub-components;
Onauth Server which represents the Core services and Onauth Manager which represents the Security
and privacy management Ul and Audit Repository.

e Onauth Server provides services for user registration, privacy policy management and
endpoints defined in OpenID Connect Core 1.0° standard to perform authentication and
authorization (Authorization Endpoint, Token Endpoint, etc.).

e Onauth Manager is a web application for representing the functionalities of Onauth Server
with following user screens; single sign on Ul, consent/approval Ul, policy management Ul,
client registration Ul, user registration Ul and audit viewer Ul.

2 https://tools.ietf.org/html/rfc6749

8 https://www.ietf.org/rfc/rfc5246.txt

4 http://wiki.ihe.net/index.php/Audit_Trail and_Node Authentication
S http://openid.net/specs/openid-connect-core-1_0.html

POWER2DM - Page 8 of 55


https://tools.ietf.org/html/rfc6749
https://www.ietf.org/rfc/rfc5246.txt
http://wiki.ihe.net/index.php/Audit_Trail_and_Node_Authentication

H2020-POWER2DM

o Audit Repository is a FHIR repository that has the ability to only manage FHIR AuditEvent
resources which are send by other POWER2DM components.

3.1 Onauth Server

3.1.1 Configuring Onauth Server for POWER2DM

Onauth Server could be initiated with default policy definitions and set of credentials. In order to
configure Onauth Server for POWER2DM, a default privacy policy and set of credentials have been
defined. Rest of this section focuses on the details of these configurations and definitions.

3.1.1.1 Realm

Each realm represents a different domain in Onauth Server environment, every realm has their own set
of rules and users. Realm definition consists of a name for representational purposes and a unigue realm
ID for identifying the realm and its components. Users in Onauth Server can only be a member of
single realm and they are treated with respect to the rules and concepts defined by their realm.
POWER2DM is also a realm in Onauth Server environment, following is the realm definition of
POWER2DM realm;

{
"id": "power2dm",
"name": "Power2dm Realm"

}

3.1.1.2 Groups

Groups in Onauth Server represents the rules and concepts defined for specific subset of users in the
realm. Groups are defined under a realm and groups may define modified rules and concepts by
extending the base definitions defined by their realm. Creating groups and assigning a to user to a group
is decided by the administration; being a member of a group is not mandatory in Onauth Server
environment. Users that belong to a group inherits the rules and concepts defined by their group. Group
definitions consists of a name for representational purposes, a unique group ID for identifying the group
and the 1D of the realm that group belongs to.

In POWER2DM, for testing purposes, a group is defined for each partner to prevent unwanted
modifications on their test users. Following is the group definition of a LUMC group;

{

"id": "lumc”,
"name": "Leiden University Medical Center",
"realmId": "power2dm"

}
3.1.1.3 Roles

Authorization of the users in Onauth Server environment are done based on the roles of the users. Each
role defines access to some set of permissions and having that role authorizes user for permission that
role have. Role definitions contain following fields;

id Unique identifier of the role

name Human readable name of the role

realm_id ID of the role that this role belongs to

isFunctional Flag that indicated if rules is functional or structural

POWER2DM - Page 9 of 55



H2020-POWER2DM

Following is the definition of the role in POWER2DM;

{
"id": "patient",
"name": "Patient",
"realm_id": "power2dm",
"isFunctional": false

}

POWER2DM realm defines two types of role; structural and functional roles. Structural roles identify
type and category of user with respect to the POWER2DM realm (e.g. realm administrator, physician).
Users could be assigned to more than one structural role and being assigned to multiple roles authorizes
them for accessing all the permissions that set of roles define. Besides administrative roles (e.g.
realm_admin, group_admin) which are defined for all realms, POWER2DM realm defines three more
structural roles;

practitioner A Practitioner providing care with support of POWER2DM
nurse A Nurse supporting care in POWER2DM
patient A Patient in POWER2DM

Functional roles identify type and category of user with respect to the specific patient. Every patient in
POWER2DM realm has a care team that maps functional roles to the users. So, users’ permissions may
vary from patient to patient with respect to the functional role of the user. For POWER2DM realm, four
functional roles are defined;

care-manager Assigned to Practitioners that manage the care of the patient in POWER2DM
care-supporter Assigned to Nurses that supports the care of the patient in POWER2DM
self-care- Assigned to patient himself as the manager of the self-management. Patient
manager may assign this role to a relative to give a full access to the self-management
system.

self-care- Patient may assign this role to relatives or friends to give him a partial access
supporter to the self-management system.

3.1.1.4 Rules

Rules define the access of a role on specific protected resource. There is a rule definition in Onauth
Server for each relation between a role and a resource set. Rule definitions contain following fields;

resourceSetld Indicates which resource is affected by this rule.

roleld Indicates which role can access this rule.

policyld ID of the policy that this rule belongs to.

permissions Only required for smart scopes values (see 2.1.2 for scope values). It defines

which permissions are given for resource set (read or write)
Following is the rule definition that identifies the relation between care-manager and Observation

resource;

{

"resourceSetId": "Observation",
"roleId": "care-manager",

“policy_id”: “power2dm_privacy policy”

POWER2DM - Page 10 of 55



H2020-POWER2DM

"permissions": {

"read":

"write":

1,

1,

"isSmartScope": true

}

3.1.1.5 Privacy Policy Definition

Privacy Policy definition consists of set of rules and options that completely identifies the authorization
profile of realm. Every realm within Onauth Server has a base privacy policy that defines the mapping
between roles and resources. In addition, groups and patients within a realm can create their policies by
extending the base privacy policy of their realm. If a group defines its own policy, that policy is
considered as the base privacy policy for its users. Privacy policy definition contains following fields;

id

name
description
authorld
realm_id
group_id

patient_access

isBase
isActive
rules

Unique identifier of the policy.
Human readable name of the policy.
Simple description that explains the purpose of policy.
Identifier of the user who defined the policy.
Identifier of the realm that policy belongs to.
Identifier of the group (If the policy defined for the group) that policy belongs
to.
Option that are used to decide which set of patients a practitioner can access.
Options are;
o realm: Practitioners can access every patient in their realm
e group: Practitioners can access every patient in their group
e care-team: Patients are only accessed by the practitioners within their
care-team.
Flag that indicates if the policy is a base policy
Flag that indicates if the policy is the active policy of the author
Rules that defines the relation between roles and resources.

See Appendix A for the complete base privacy definition of POWER2DM.

3.1.2 Scope Values

Onauth Server binds scope values to access tokens to decide which token can access which protected
resources. Scopes values are generated with respect to the rule definitions that are defined for user’s
role. For Onauth Manager and PDS the following scopes are defined:;

openid

profile

Email

address

Informs the Authorization Server that the Client is making an
OpenlID Connect® Authentication request.

This scope value requests access to the End-User's default
profile information (claims), which are: given_name,
family_name, username, picture, gender, birthdate,zoneinfo,
locale, pds_resource_type, pdm_user_type, pdm_care_givers,
pdm_organization (See Section 2.1.3 for the definition of user
claims).

This scope value requests access to the email and
email_verified claims

This scope value requests access to the address claim.

8 http://openid.net/specs/openid-connect-core-1_0.html

POWER2DM -

Page 11 of 55



H2020-POWER2DM

patient/resourceType.permission This scope value requests access to the patient’s protected
resources on PDS. The resource type could be any FHIR
resource type or (*) (which means all resource types the user
authorized for) and the permission could be read, write or (*)
(which  means both read and write access). E.qg.:
patient/Observation.read means read all observations about
patient, patient/*.read means read all available data about
patient. This type of scopes are defined by “Health Relationship
Trust Profile for Fast Healthcare Interoperability Resources
(FHIR) OAuth 2.0 Scopes™

patient/UserInfo.permission OPTIONAL. This scope value is used to access the UserInfo of
patient (only given_name, family name, picture, gender,
birthdate). Users also may get this scope with patient/*.*.

fhir/patient This scope is defined for confidential clients that are authorized
with client credentials and that needs offline access to PDS
(without any user, for internal data processing). They can
request this scope to access all the data in PDS.

offline_access This scope value requests that an OAuth 2.0 Refresh Token?®
be issued that can be used to obtain an Access Token that grants
access to the End-User's UserInfo Endpoint even when the End-
User is not present (not logged in).

3.1.3 User Claims

Fields of a user’s profile information stored at Onauth Server are protected with claim values. Some
scopes defined in Onauth Server enables access to some set of claim values. For example, being
authorized for profile scope value authorizes access token for accessing; given_name, family_name,
username, picture, gender, birthdate, zone_info, locale, pds_resource_type, pdm_user_type,
pdm_care_givers, pdm_organization claim values. Onauth Server supports following standard claim
values;

username Unique username of the user which is used for login.

password User password.

given_name Name of the user.

family_name Surname/Family name of the user.

middle_name Middle name(s) of the user.

gender Gender of the user.

birthdate Birthdate of the use (in ISO date format e.g. 1966-03-03).

email Email of the user.

address JSON Object representing the address of the user (See Section 5.1.1 of OpenID
Connect Core 1.0° for the details of address claim).

picture URL of user’s profile picture.

zone_info User’s time zone.

locale Language tag (e.g. en-US) indicating the language of user.

Following extra claims are defined in Onauth Server for POWER2DM,;
pdm_organization = Id of the organization that the user is assigned to. For patients, this may be the
Healthcare Organization that patient is getting the care. For physicians and nurses,
this will be the Healthcare Organization they are working for.
roles Set of structural roles assigned to the user. See Section 2.1.1.3 for the description of roles.

7 http://openid.net/specs/openid-heart-fhir-oauth2-1_0-2017-05-31.html
8 https://tools.ietf.org/html/rfc6749
9 http://openid.net/specs/openid-connect-core-1_0.html

POWER2DM - Page 12 of 55



H2020-POWER2DM

care_team Only used for patients. JSON object representing the care team assigned to the patient.
Each parameter name represents a functional role and its value (array of string) provides
the identifiers of users assigned to that functional role for patient. See Section 3.1.1.3 for
the description of roles. The following is an example care_team claim;

"care_team”: {
"care-manager": ["cad2a677-bc63-4d19-ae03-545fc872dd3”],
"care-supporter": [],
"self-care-manager": ["36d8bllb-1c68-421d-bc89-cc7a92471e61"],

"self-care-supporter": []

3.1.4 User Registration

Onauth Server also provides endpoints for creating and updating users. The endpoint only accepts
requests if a valid access token that is authorized for required scopes is provided at the Authorization
header. Following sections explains the details of those endpoints;

3.1.4.1 Create/lnvite Endpoint

To perform user registration, the authenticated end user (that will perform the user registration) should
be authorized for the at least one user_registration/{role} scope (e.g. a user with
user_registration/patient can register users with patient role). In POWER2DM realm, users who have
practitioner or nurse role can register users with patient role and users who have group_admin role can
register users either with practitioner or nurse role.

Onauth Server enables the authenticated users to register user either by providing all the required
information or by only inviting him through an email address. In POWER2DM pilots, for patient
registration, invitation mechanism will be used.

The schema and details of registration request is defined below. Note that, for patient registration, not
all the parameters will be used.

POST power2dm/onauth/api/userinfo
Host: app.srdc.com.tr
Authorization: Bearer access_token
{

username: String,

password: String,

family name: String,

given_name: String,

middle name: String,

picture: String,

gender: String,

birthdate: String,

POWER2DM - Page 13 of 55



H2020-POWER2DM

pdm_user_type: String,

zone_info: String,

email: String,

address: Address Claim object,

locale: String,

roles: List[String]

username

password
given_name
family_name
middle_name
gender
birthdate
email
address

picture
zone_info
locale
roles

REQUIRED. Preferred username of the user which will be used for login. For
patients, this will be the Study Number assigned by the practitioner that
registers the patient.

OPTIONAL. User password

OPTIONAL. Name of the user. (for non-patient users)

OPTIONAL. Surname/Family name of the user. (for non-patient users)
OPTIONAL. Middle name(s) of the user. (for non-patient users)

OPTIONAL Gender of the user. (REQUIRED for patient)

OPTIPNAL. Birth year of the user (e.g. 1966). (REQUIRED for patient)
OPTIONAL. Email of the user. (REQUIRED for patient)

OPTIONAL. JSON Object representing the address of the user (See Section
5.1.1 of OpenlID Connect Core 1.0 for the details of address claim).
OPTIONAL. URL of user’s profile picture.

OPTIONAL. User’s time zone.

OPTIONAL. Language tag (e.g. en-US) indicating the language of user.
REQUIRED. Set of roles defined for the user.

For performing registration, the parameters defined above should be wrapped in a JSON object and sent
to the UserInfo endpoint with Http POST request with access token that is authorized for registration at
the Authorization header. Following is an example request for registering a patient;

POST power2dm/onauth/api/userinfo

Host: app.srdc.com.tr

Authorization:

Bearer S1AV32hkKG

Content-Type: application/json

{

"username": "patient_sasl",

"gender": "female",

"birthdate":

"1966",

"email": xyz@gmail.com

"roles": ["patient"]

10 http://openid.net/specs/openid-connect-core-1_0.html

POWER2DM -

Page 14 of 55



H2020-POWER2DM

Upon successful registration request, Onauth Server responds with 201 CREATED with stored
Userlnfo of the registered user, returned Userinfo may contain additional fields. The following is a non-
normative example of a registration response;

HTTP/1.1 201 CREATED
Content-Type: application/json
Cache-Control: no-cache, no-store

Pragma: no-cache

{
"sub":"36d8b11b-1c68-421d-bc89-cc7a92471e61",
"preferred_username":"patient sasl",
"gender": "female",
"care_team": {
"care-manager": ["cad2a677-bc63-4d19-ae03-545fc872dd33"],
"care-supporter": [],
"self-care-manager": ["36d8bl1lb-1c68-421d-bc89-cc7a92471e61"],
"self-care-supporter": []
¥
"pdm_organization":"sas",
"roles": ["patient"]
}

Here as you can see, an identifier (data store identifier) is assigned to patient which is given in “sub”
element. Furthermore, the registrar is assigned to “care manager” role for patient where the patient is
assigned for self-care-manager role automatically.

An unsuccessful create response would be 401 Unauthorized or 400 Bad Request with either FHIR
Operation Outcome (which means there was a problem at PDS) or a message that explain the error. The
following is a non-normative example of a registration response (selected username is already taken);

HTTP/1.1 400 Bad Request
Content-Type: text/plain
Cache-Control: no-cache, no-store
Pragma: no-cache
{

“error”: “username_taken”

“error_desc”: “Username is already taken. Please select another username”

POWER2DM - Page 15 of 55



H2020-POWER2DM

3.1.4.2 Update Endpoint

Update operations (update of user profile) could only be performed by the owner of the UserInfo. In
order to perform update operation, user must be authorized for the user_info_update scope. Parameters
of the update operation are the same for create operation except username, password, role and
pdm_user_type could not be updated from this endpoint. Those parameters will be ignored even if they
exist in request body. The schema of update request is defined below;

PUT power2dm/onauth/api/userinfo
Host: app.srdc.com.tr
Authorization: Bearer access_token
{

family name: String,

given_name: String,

middle _name: String,

picture: String,

gender: String,

birthdate: String,

zone_info: String,

email: String,

address: Address Claim object,

locale: String,

For updating profile information, the parameters defined above should be wrapped in a JSON object and
sent to the UserInfo endpoint with Http PUT request. Following is an example request for updating
profile information,

POST power2dm/onauth/api/userinfo
Host: app.srdc.com.tr
Authorization: Bearer S1AV32hkKG

Content-Type: application/json

{
"family name": "Jane",
"given_name": "Doe",
"gender": "female",

"birthdate": "1966-10-10",

Upon successful update request, Onauth Server responds with 200 OK with updated UserInfo at the
body. The following is a non-normative example of an update response;

POWER2DM - Page 16 of 55



H2020-POWER2DM

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-cache, no-store

Pragma: no-cache

{
"sub":"36d8b11b-1c68-421d-bc89-cc7a92471e61",
"given_name": "Doe",
"family name": "Jane",
"preferred_username":"patient sasl",
"gender": "female",
"pdm_user_type": "patient",
"care_team": {
"care-manager": ["cad2a677-bc63-4d19-ae03-545fc872dd33"],
"care-supporter": [],
"self-care-manager": ["36d8bl1lb-1c68-421d-bc89-cc7a92471e61"],
"self-care-supporter": []
¥
"pdm_organization":"sas"
}

An unsuccessful update response would be 401 Unauthorized or 400 Bad Request with a message that
explains the error. The following is a non-normative example of a error response (request without name
parameter):

HTTP/1.1 400 Bad Request
Content-Type: text/plain
Cache-Control: no-cache, no-store
Pragma: no-cache

The request content was malformed:

No usable value for name

3.1.5 Client Registration

In order to use services that are defined in this documentation, client applications must register
themselves to Onauth Server. In the POWER2DM setup, all the POWER2DM components will be
registered as clients to the Onauth server. Onauth Server uses “Dynamic Client Registration” process
explained in OpenlID Connect Dynamic Client Registration 1.0, Following fields are important for

11 http://openid.net/specs/openid-connect-registration-1_0.html

POWER2DM - Page 17 of 55



H2020-POWER2DM

POWER2DM to register a new client (for the full list of fields and their details see section 2 of OpenlID
Connect Dynamic Client Registration 1.0'?);
redirect_uris REQUIRED. Array of Redirection URI values used by the client.
One of these registered Redirection URI values MUST exactly
match the redirect_uri parameter value used in each Authorization

Request.
grant_types OPTIONAL. List of the grant types client is declaring that it will
restrict itself to using. The grant type values used by Onauth
Server are:
e authorization_code: It is used for authorization process
using code.
e client_credentials: It is used for authorization with client
credentials.
e refresh_token: It is used for refreshing access token
client_name RECOMMENDED. Name of the Client to be presented to the end-

user. If present, client name is displayed to end-user during
approval process. e.g. POWER2DM SMSS Mobile Application

logo_uri RECOMMENDED. URL that references a logo for the Client
application. If present, the logo is displayed to the End-User during
approval. The value of this field must point to a valid image file.

client_uri OPTIONAL. URL to the home page of the client application. The
value of this field must point to a valid Web page. If present, this
URL is displayed to the end-user during approval.

contacts OPTIONAL. Array of e-mail addresses of people responsible for
this client application. If present, contacts are displayed to the end-
user during approval.

policy_uri OPTIONAL. URL that the Relying Party Client provides to the
End-User to read about the how the profile data will be used
tos_uri OPTIONAL. URL that the client application provides to the end-

user to read about its terms of service. The value of this field must
point to a valid web page. If present, this URL is displayed to the
end-user during approval.

token_endpoint_auth_method OPTIONAL. Requested Client Authentication method for the
Token Endpoint. The defined options are client_secret_basic and
none. If omitted, the default is client_secret_basic. Public apps
should select this option as none.

For performing registration, the parameters defined above should be wrapped in a JSON object and sent
to the Client endpoint with Http POST request. Following is an example request for registering a client;

POST power2dm/onauth/api/register
Host: app.srdc.com.tr
Content-Type: application/json
{
"redirect_uris": [
"http://app.srdc.com.tr/power2dm/onauth/sample-smart-client/authorize-cb"

1,
"grant_types": [

12 http://openid.net/specs/openid-connect-registration-1_0.html

POWER2DM - Page 18 of 55



H2020-POWER2DM

“authorization_code"
1,
"client_name": "SRDC Sample Client",
"logo uri": "http://www.srdc.com.tr/wp-content/uploads/2014/12/srdc-wp.png",
"client_uri": "http://dummyclient.com",
"contacts": [
"tuncay@srdc.com.tr"

1B

"token_endpoint_auth_method": "none"

Upon successful registration request, Onauth Server responds with 201 CREATED with stored client
metadata of the registered client application. Returned client metadata includes unique client_id and
client_secret of the client. Public applications which select token_endpoint_auth_method as none may
ignore client secret but private applications should keep their secret safe. The following is a non-
normative example of a registration response;

HTTP/1.1 201 Created

Content-Type: application/json

"client_id": "fdb74fa7-cb60-423f-87ee-89dbadc490cl”,
"client_secret": "r247v76ngrnga8d7hdojmmajom”,
"redirect_uris": [
"http://app.srdc.com.tr/power2dm/onauth/sample-smart-client/authorize-cb"
1,
"client_name": "SRDC Dummy Client",
"client_uri": "http://dummyclient.com",
"logo_uri": "http://www.srdc.com.tr/wp-content/uploads/2014/12/srdc-wp.png",
"contacts": [
"tuncay@srdc.com.tr"
15
"token_endpoint_auth_method": "none",
"scope": "profile openid address email patient user fhir/patient”,
"grant_types": [
"authorization_code"
1,
"response_types": [

llcodell

POWER2DM - Page 19 of 55



H2020-POWER2DM

1,

"application_type": "web",
"request_object_encryption_enc": "A128CBC-HS256",
"user_info_encrypted _response_enc": "A128CBC-HS256",
"id_token_signed_response_alg": "RS256",
"id_token_encrypted response_enc": "A128CBC-HS256",
"client_secret_expires_at": 9,

"require_auth_time": false

}

An unsuccessful registration response would be 400 Bad Request with a message that explains the error.
The following is a non-normative example of an error response (request without redirect_uri field):

HTTP/1.1 400 Bad Request

Content-Type: application/json

"errorCode": "invalid_redirect_uri",

"errorDesc": "At least 1 redirect_uri should be provided.",

3.2 Authentication & Authorization

Authentication and authorization of POWER2DM is managed by single sign on policy. Every client
application should request user authorization from Onauth Server to get an access token. Applications
can use that token to access users’ protected information. Authentication and authorization mechanism
of POWER2DM is implemented with respect to the rules and concepts defined in OpenID Connect
Core 1.0, Briefly, a client application should follow these steps to get an access token from the server
(see Figure 1);

1. Client application prepares an authorization request and sends it to the authorize endpoint of
Onauth Server,
Onauth Server authenticates the end user, obtains his/her consent for the client application,
Onauth Server redirects the end user back to the client application with code,
Client application sends code to the token endpoint of Onauth Server,
Onauth Server responds with the access token and id token,
Client uses the access token received from Onauth Server to access to the protected resources
of the user.

ok~ LN

Remaining part of this section will focus on the details of steps defined above.

13 http://openid.net/specs/openid-connect-core-1_0.html

POWER2DM - Page 20 of 55



H2020-POWER2DM

Client (e.g. a Web
Application)

(1) Client Sends Authentication Request

b

Onauth Manager

(2) User Authentication and Authorization

Onauth Server

(3) Authentication Respense

™

(4) Token Request

(5) Token Response

I

(6) User Info Request

e

(7) User Info Response

o

(8) FHIR Request

N

PDS
(9) FHIR Response

Figure 1 Authentication and authorization flow

3.2.1 Client Sends Authentication Request

Client application initiates authentication flow by making a HTTP Get request to the authorize endpoint
of Onauth Server with following parameters;

response_type

client id
scope

redirect_uri

state

This value must be code. This type of call requests an Access Token
and an ID Token be returned from the Token Endpoint in exchange
for the code value returned from the Authorization Endpoint.

Client Identifier valid at the Authorization Server.

OpenID Connect authentication requests MUST contain the openid
scope value. See Section 2.1.2 for more about the scope values
defined for POWER2DM.

Redirection Uri which the response will be sent. This Uri must match
one of the Redirection Uri values of client.

Opaque value used to maintain state between the request and the call
back. Typically, Cross-Site Request Forgery (CSRF, XSRF)
mitigation is done by cryptographically binding the value of this
parameter with a browser cookie.

If parameters provided by the client is correct, user is responded with 302 Found and redirected to the
Onauth Manager for authentication. Erroneous requests are processed differently based on the error
generated; If the client application provided an incorrect client_id or redirect_uri, user is redirected
Onauth Manager with the proper error message, If the client_id and redirect_uri is correct then the

POWER2DM -

Page 21 of 55



H2020-POWER2DM

user redirected to the client application’s redirect URI address with proper error message. An example
successful authentication request and response would be;

GET http://app.srdc.com.tr/power2dm/onauth/api/authorize?
response_ type=code
&client id=sample client id
&redirect uri=http%3A%2F%2Fapp.srdc.com.tr32Fpower2dm32F
onauth%2Fsample-smart-client%2Fauth callback.html
&scope=openid%20profile%20patient/*.*%200ffline access

&state=af0ifjsldkj

HTTP/1.1 302 Found
Location:
http://app.srdc.com.tr/power2dm/onauth/onauthmanager/login?
scope=profile%2Bopenid%2Bpatient%2F*.*%2Foffline access
&redirect uri=http%3A%2F%2Fapp.srdc.com.tr32Fpower2dm%2F
onauth%2Fsample-smart-client%2Fauth callback.html
&client id=sample client id

&response type=code

An error on client_id or redirect_uri parameters would result in;
HTTP/1.1 302 Found
Location:
http://app.srdc.com.tr/power2dm/onauth/onauthmanager/information?
error=unauthorized client

&errorDesc=Invalid+client id+parameter

3.2.2 End User Authentication

Upon successful authentication request by the client application, Onauth Server redirects user to the
Onauth Manager and authentication process continues as follows;
e If the user does not already have an authenticated session, user is redirected login screen and
asked for his/her credentials (see Figure 3).
e Useris asked whether he/she accepts or denies client application’s request for private information
(see Figure 4).
e If End user is not a patient (e.g. physician), user is asked to select a patient from list of related
patients (i.e. patients of the physician, see Figure 5). Only “Study Numbers” of patients will be
shown to the user for the selection.

3.2.3 Client Receives Code

If user gives his/her consent to the client application, Onauth Server issues a code and delivers it with
the state parameter to the client application. Client applications are responsible for checking whether
the state parameter matches with the state parameter they’ve sent in authentication request. On contrary,

POWER2DM - Page 22 of 55



H2020-POWER2DM

if user denies the client application’s request, user is still redirected to the client application but this time
with proper error message.

For both cases, parameters to be delivered to the client application are added as query parameters to the
URI of the client application using the application/x-www-form-urlencoded format. An example
approved and denied authorization request would be;

HTTP/1.1 302 Found
Location:

http://app.srdc.com.tr%$/power2dm/onauth/sample-smart-client/auth callb
ack.html?

code=Splx10BeZQQYbYS6WxSbI

&state=af0ifjsldkj

HTTP/1.1 302 Found
Location:
http://app.srdc.com.tr/power2dm/onauth/onauthmanager/information?
error=access_denied
&errorDesc=User+denied+applicationtaccess

&state=af0ifjsldkj

3.2.4 Client Exchanges Code with Token

After getting the authorization code from the query parameters, client application makes a token request
by presenting its authorization grant (in the form of an authorization_code) to the Token Endpoint of
Onauth Server. In addition, clients should provide the same redirect_uri parameter that they used while
performing the authentication request.

Token Endpoint of Onauth Server requires client authentication depending on the type of client which
is making the token request. For public clients (e.g. User-agent based web applications, native mobile
applications), client authentication using client_id and client_secret is not required but they must provide
their client_id as a parameter. But confidential clients (who can store a secret safely) are required to
authenticate themselves using HTTP Basic which is an authentication scheme which is defined at the
Section 2.3.1 of the OAuth 2.0 Authorization Framework*,

Requests to the Token Endpoint is made with HT TP Post request with the required parameters are added
to the body of the request using application/x-www-form-urlencoded format. An example token request
by a confidential and public client application would be;

POST power2dm/onauth/api/token HTTP/1.1
Host: app.srdc.com.tr
Authorization: Basic czZCaGRSa3FOMzpnWDFmQmFOM2JW

Content-Type: application/x-www-form-urlencoded

grant type=authorization code

14 https://tools.ietf.org/html/rfc6749

POWER2DM - Page 23 of 55



H2020-POWER2DM

&code=Splx10BeZQQYbYSO6WxSOIA

&redirect uri=http%$3A%2F%2Fyet.another.secure.servers2Fcb

POST power2dm/onauth/api/token HTTP/1.1 HTTP/1.1

Host: app.srdc.com.tr

Content-Type:

application/x-www-form-urlencoded

grant type=authorization code

&code=Splx10BeZQQYbYSO6WxSOIA

&client id=fca8d49c-3£53-4886-8f7c-0cdf8a9d9%a09

&redirect uri=http%3A%2F%2Fapp.srdc.com.tr32Fpower2dm32F

onauth%2Fsample-smart-client%$2Fauth callback.html

3.2.5 Client Receives Token

Upon successful token request, Onauth Server responds with the access token object in JSON format.
Token response contains following fields;

access_token

Scope
id_token

refresh_token
token_type
refresh_token
expires_in

patient

Access token for accessing protected resources. This token can be used for
UserInfo Endpoint and PDS.

Scopes that this access token is authorized for.

See Section 2 in OpenlID Connect 1.0* for the details of 1D token (JWT token
that contains Claims about the Authentication event for the End user).

Refresh token. See offline_access scope at Section 2.1.2.

OAuth 2.0 Token Type!® value. The value is always Bearer.

OPTIONAL. This scope value is used to access the UserInfo of patient (only
given_name, family_name, picture, gender, birthdate). Users also may get this
scope with patient/*.*.

Expiration time of the access token in seconds since the response was
generated.

If the patient scope is present at the requested scopes, Onauth Server returns
the patient identifier of patient that this access token is authorized for (If end
user is patient himself, this is his own patient identifier. Otherwise, this is the
patient identifier of the selected patient).

If token request results with an error, then proper error code and error description is returned to the client
application in JSON format. The following is an example for successful token response;

HTTP/1.1 200 OK
Content-Type:

Cache-Control:

application/json

no-cache, no-store

Pragma: no-cache

15 http://openid.net/specs/openid-connect-core-1_0.html
16 https://tools.ietf.org/html/rfc6749

POWER2DM -

Page 24 of 55



H2020-POWER2DM

"access token": "S1AV32hkKG",

"token type": "Bearer",

"scope": "patient/Observation.write patient/UserInfo.read..",
"refresh token": "8cjhj43d5893jic4dg4c22bhl0b8il",

"expires_ in": 3600,

"id token": "eyJraWQ....bePk20b2tJFJ....1Zz50g9",

"patient": "00d545e8-7c86-4c16-84bc-7397f6e8741e"

The following is an example for erroneous token response;
HTTP/1.1 401 Unauthorized

Content-Type: application/json
Cache-Control: no-cache, no-store

Pragma: no-cache

“error”: “invalid grant”

“errorDesc”: “Only authorization code is supported.”

3.2.6 Client Uses Token to Access Information

Client applications can use access token received from Onauth Server to access Userlnfo Endpoint and
Pds resources by inserting the access token to the authorization header of the HTTP requests. Following
sections exemplify such a request made to the secure endpoints.

3.2.6.1 Client Accesses User Info
An example UserInfo request and response;

GET power2dm/onauth/api/token HTTP/1.1
Host: app.srdc.com.tr

Authorization: Bearer S1AV32hkKG

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-cache, no-store

Pragma: no-cache

"sub": "294d92b6-7610-40a3-a3£f2-44443486d1£f2"

"name": "Martha",

POWER2DM - Page 25 of 55



H2020-POWER2DM

"surname": "Cook",
"preferred username": "martha cook",
"pdm user type": "patient",

"care team”: {
"care-manager":"cad2a677-bc63-4d19-ae03-545fc872dd33"],
"care-supporter":],
"self-care-manager":"36d8bl1lb-1c68-421d-bc89-cc7a92471e61"],
"self-care-supporter": []

by

"pdm organization": "lumc"

3.2.6.2 Client Accesses Patient’s User Info

Client applications also can access to the basic profile information of the patient in context (e.g. a
physician authorized the client application for a patient). Following is the example request made to the
token endpoint for a patient;

GET power2dm/onauth/api/userinfo/forbidden patient HTTP/1.1
Host: app.srdc.com.tr

Authorization: Bearer S1AV32hkKG

Such a request may fail if the client tries to access to a patient profile other than the patient in context.
Following is the example to error response of such a request;

HTTP/1.1 401 Unauthorized
Content-Type: application/json
Cache-Control: no-cache, no-store

Pragma: no-cache

“error”: “access denied”

errorDesc”: “Token is not authorized to access this patient.”

3.2.6.3 Client Access PDS Resources

PDS checks the reliability of access tokens by introspecting them from Onauth Server. Rather than
reliability, token introspection also gives information to the PDS about the token. For example, even
though a client application tries to run a query on all Observation records, PDS limits the query only to
the patients that the access token is authorized for. Following is such a search request and response for
Observation records;

GET /power2dm/pds-secure/Observation

Host: app.srdc.com.tr

POWER2DM - Page 26 of 55



H2020-POWER2DM

Authorization: Bearer S1AV32hkKG

HTTP/1.1 200 OK
Content-Type: application/json
{
"resourceType": "Bundle",
"id": "ffc3a75a-32a5-435a-9597-e2c8c7b64c95",
"type": "searchset",
"total": 1,
"link": [
{
"relation": "self",

"url": "http://app.srdc.com.tr/power2dm/pds-secure/Observation?patie
nt=00d545e8-7c86-4cl16-84bc-7397f6e8741e"

}
I
"entry": [
{

"fullUrl": "http://app.srdc.com.tr/power2dm/pds-secure/Observation/14
a94454-410a-4e93-8eeb5-691460c7bbab",

"resource": {
"resourceType": "Observation"..

}

3.2.7 Refreshing Access Tokens

Client applications can use the expires_in field from the authorization response to determine when its
access token will expire. After an access token expires, it may be possible to request an updated token
without user intervention, if the app asked for a refresh token via the offline_access scope and the server
supplied a refresh_token in the authorization response. To obtain a new access token, the app issues an
HTTP POST to the Token Endpoint, with content-type application/x-www-form-urlencoded

For confidential clients, an Authorization header using HTTP Basic authentication is required, where
the username is the app’s client_id and the password is the app’s client_secret. For public clients,
authentication is not possible (and thus not required) but client_id must be provided.

Client makes a Token Request by presenting its Authorization Grant (in the form of an Refresh Token)

to the Token Endpoint using the refresh_token value for grant_type parameter with refresh_token value.
In addition, scope parameter could also be defined and if present, scope value must be a strict sub-set of

POWER2DM - Page 27 of 55



H2020-POWER2DM

the scopes granted in the original request (no new permissions can be obtained at refresh time). A
missing value indicates a request for the same scopes which are granted in the original request.

The following is a non-normative example of a Token Request made by confidential client (with line
wraps for the display purposes only):

POST power2dm/onauth/api/token HTTP/1.1

Host: app.srdc.com.tr

Authorization: Basic ¢zZCaGRSa3FO0MzpnWDFmQmEOM2JW

Content-Type: application/x-www-form-urlencoded

grant type=refresh token

&refresh token=8cjhj43d5893jic4dg4c22bhl0b8il

The following is a non-normative example of a Token Request made by public client (with line wraps
for the display purposes only):

POST power2dm/onauth/api/token HTTP/1.1
Host: app.srdc.com.tr

Content-Type: application/x-www-form-urlencoded

grant type=refresh token
&refresh token=8cjhj43d5893jic4dg4c22bhl0b8il

&client id=fca8d49c-3£53-4886-8f7c-0cdf8a9d9%a09

A successful refresh_token response is same with the access_token response except id_token may not
be present at the body. If a new refresh token is present at the response, clients should replace the old
refresh token with the new one.

3.2.8 Authorization with Client Credentials

POWER2DM also has some applications (confidential clients) that require access to the private
information but have not any Ul elements (i.e. Communication Engine). Such client applications may
request access tokens by authenticating themselves with HTTP Basic scheme. To obtain an access token
using client credentials, client makes a request to the Token Endpoint using client_credentials value for
the grant_type parameter. Only certain clients are given such scope. The following is an example of
such a token request and response;

POST power2dm /onauth/api/token
Host: app.srdc.com.tr

Authorization: Basic czZCaGRSa3FOMzpnWDFmQmFOM2JW

grant type=client credentials

&scope=fhir/patient

HTTP/1.1 200 OK

POWER2DM - Page 28 of 55



H2020-POWER2DM

Cache-Control: no-cache, no-store

Pragma: no-cache

{

"access token": "jfieej3hic5gj55ai50cdedbag3b5j",
"token type": "Bearer",
"scope": [
"fhir/patient"
I
"expires in": 3600
}
3.3 Auditing

Audit Server implements FHIR STU3 (3.0.1) specification'” for FHIR Create, Read, VVRead, History
and Search operations for FHIR Audit Event resource type!®, POWER2DM PDS uses “FHIR Create”
service to send the audits for each data access/update to PDS. Onauth Server generates and send audits
for user authentications. The following record shows a PDS generated audit for a query to PDS.
AuditEvent records basically includes the following information;

Type of event (type, subtype): This gives the type of event that audit is generated for. The given
example indicates that the audit is for a FHIR search event (data search).

Time of event (recorded)

Outcome of event (outcome, outcomeDesc): Indicates whether the operation is successful or not.
e.g. If search operation is successfully completed

Agents of the event (agent): This defines the parties (applications) that performs the operation.
In this example, it is seen that the search is performed from a specific IP address (95.9.71.171) by the
practitioner given with id (4b19f8a6-9f3f-40c0-988f-2¢7894ee7416). The other agent is the performed of the
search which is the PDS itself.

Entity of the event (entity): This part provides the entities that the operation is performed on. In
the example, the first one indicates the search is performed for Patient with id (7fd4c6c5-9aa3-4bbi1-
9hd0-33d4e7ebdabf) and the second entity provides the query (encoded in Base64) that is performed
on Observations of patient.

"resourceType": "AuditEvent",
"type": {
"system": "http://hl7.org/fhir/audit-event-type",
"code": "rest"
}I
"subtype": [
{
"system": "http://hl7.org/fhir/restful-interaction",
"code": "search-type"
}
j|l
"action": "R",
"recorded": "2017-10-25T14:10:42.535+03:00",
"outcome": "0",
"outcomeDesc": "200 OK: OK",
"agent": [

17 http://hI7.org/fhir/index.html

18 hitp://hI7.org/fhir/auditevent.html

POWER2DM - Page 29 of 55


http://hl7.org/fhir/index.html
http://hl7.org/fhir/auditevent.html

H2020-POWER2DM

"role": [
{
"coding": [
{
"system" "http://nema.org/dicom/dicm",
"code" "110153"
}
]
}
]I
"requestor": true,
"network": {
"address": "95.9.71.171",
"type": "2"
}I
"reference": {
"reference": "Practitioner/4b19f8a6-9£f3f-40c0-988f-2e7894ee7416"
}
}I
{
"role": [
{
"coding": [
{
"system": "http://nema.org/dicom/dicm",
"code": "110152"
}
1
}
:I!
"name": "POWER2DM Personal Health Data Store",
"requestor": false,
"network": {
"address": "http://127.0.0.1:8080/pds",
"type": ll2ll
}
}
:I!
"source": {
"identifier": {
"value": "http://127.0.0.1:8080/pds"
}
}I
"entity": [
{
"type": {
"system": "http://hl7.org/fhir/audit-entity-type",
"code": "1"
}I
"role": {
"system": "http://hl7.org/fhir/object-role",
"code": "1"
}I
"reference": { "reference": "Patient/7fd4c6c5-9%9aa3-4bbl-9bd0-33d4e7ebdabf"}
}I
{
"type": {
"system": "http://hl7.org/fhir/resource-types",
"code": "Observation"
}I
"role": {
"system": "http://hl7.org/fhir/object-role",
"code": "24"
}I
"query": "aHROcDovLzEyNy4wLjAuMTo4MDgwL3Bkcy9QYXRpZW50"
}
1
}
POWER2DM - Page 30 of 55



H2020-POWER2DM

4 Demonstration of Functionalities

Onauth Server and Onauth Manager are deployed on our cloud for demonstration and for testing
environment for other partners. Onauth Server is accessible on
http://app.srdc.com.tr/power2dm/onauth/api  and  Onauth  Manager is  accessible on
http://app.srdc.com.tr/power2dm/onauth/onauth-manager.

4.1 Authorization & Authentication

This section demonstrates the example OpenID Connect Authorization Code Flow®® using the
Onauth Manager and a sample client application which is developed only for demonstration purposes
and to be an example for other POWER2DM components. You can access the sample client which is
deployed for demonstration purposes on http://app.srdc.com.tr/power2dm/onauth/sample-smart-client.

4.1.1 Single Sign On

When you open the sample client, first screen you will see is the “Initiate Authorization” button with
some explanations;

@=D — (m] X
[ Simple Smart Client x
< C | ® app.srdc.com.tr/power2dm/onauth/sample-smart-client *| D D
22 Uygulamalar Coding Books Scala Fhir Android Stuff & baron 1898 - Google Auth_SRDC » Diger yer isaretieri

This client has two pages;
- index.html which you will initate authorization flow by pressing the button below.
- auth_callback.html which is redirect_uri called by the OIDC Provider with the code that
will be exchanged for access token. Then by using the token this page will provide some
information about the token owner and a patient that you will select (if you are
not already a patient) during consent process.
If you already have completed a authorization flow (which means you have a access
token stored at local storage) and your token is still active, you can directly go
to the auth_callback.html for to get information about the authorized user.
IF YOU ARE USING BROWSER INSPECTION TO EXAMINE CODE: At auth_callback.html, you will see
a long javascript file called bundle.js, it is genreated using browserify for using fhir.js library.
The code you should examine starts after “token.js starting from here” comment.

Pressing the button will redirect browser to login page

Initiate Authorization

Figure 2 Client sends authorization request

Clicking “Initiate Authorization” button will send authorization request to the authorize endpoint of
Onauth Server as explained in Section 3.2.1.1. On successful request, Onauth Server redirects user to
the log in page of the Onauth Manager.

Username/Password authentication is the default authentication mechanism for all users. However, users
can select another alternative which is 2-factor authentication in which case they should also register
their phone number to their account. If that is the case, after confirming username and password, Onauth
server sends a verification code via SMS to the user and user is expected to enter this code in the next
step.

19 http://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth

POWER2DM - Page 31 of 55


http://app.srdc.com.tr/power2dm/onauth/api
http://app.srdc.com.tr/power2dm/onauth/onauth-manager
http://app.srdc.com.tr/power2dm/onauth/sample-smart-client

H2020-POWER2DM

[ezan) = o X

¥} Onauth-Manager x
< C | ® Guvenli degil | app.srdc.com.tr/power2dm/onauth/onauth-manager/login?state=20433887&iscope=patient%2F**%.. ¥ | & @ i
£ Uygulamalar Coding Books Scala Fhir Android Stuff G baron 1898 - Google Auth_SRDC » Diger yer isaretleri

POWER

Login to Your Account

Usemame

Pas: ord

Figure 3 User is redirected to Sign In page

4.1.2 User Consent

Upon successful sign on, user is redirected to the consent page where he/she is asked to authorize the
client to act on behalf of him/her as shown in Figure 4. Here the user can check the registered data for
client and which data client will access to on behalf of him.

em=n = =} %
¥ Onauth-Manager x
<« C | ® app.srdc.com.tr/power2dm/onauth/onauth-manager/consent?client_id=sample_client_id&scope=patient%2F*~.. Q ¥r| & @
222 Uygulamalar Coding Books Scala Fhir Android Stuff G baron 1898 - Google Auth_SRDC » Diger yer isaretleri

POWER

SRDC Dummy Client needs authorization to access following

information:

< SRDC

¥/ 2 iog in using your identity

Client Name:
SRDC Dummy Client “ = bpasic profile information

Human readable client name @ W access rights for patient data

Contacts:

tuncay@srdc.com.tr

List of contacts for administrators of this client

Terms of Service Uri: Terms of Service

URL for the Terms of Service of this client, will be

smart-client/auth_callback.html

Accepting authorization request will redirect vou to
http://app.srdc.com. tr/power2dm/onauth/sample-

diaplaypdic:tha user @ Remember my decision

Policy Uri:  Privacy Policy

URL for the Privacy Policy of this client. will be
displayed to the user

Figure 4 User is asked for consent

In the next step, if user is not a patient, he/she is asked to select a patient to set the authorization context
to a specific patient. In other words, the Shared Decision-Making Application, used by care providers
never access to the identity data of patients as the patient selection is done via the patient selection screen
as shown in Figure 5 internally.

POWER2DM - Page 32 of 55



H2020-POWER2DM

POWER

Select a Patient (by Study Number)

patient_lumc

patient_lumc2

patient_lumc3

patient_lumcd

patient_lumcd

patient_lumcd

Figure 5 User selects patient

4.1.3 Requests with Sample Client

After user approved the client, he/she is directed back to the client with the code and client exchanges
code for an access token as explained in Section 2.2.1.3. Below, Figure 6, is the snapshot of sample

client after exchanging code with the token;

Token Response

{

"access_token": "19i4b881gf97beg2hdi8dg6acln7ion,
“token_type”: "Bearer”,
“scope”: "patient/OrderResponse.write patient/Procedure.write patient/Medication.read patient/Ba:

“expires_in": 3608,
“id_token": “eyJrakiQiOillY3AwZDg3YylmZTZALTQAM]ctYTQIMI1FM2YXMTKyN2MINTCiLCIhBGCi0iISUZIINIID ey
"patient": "0@d545e8-7c86-4c16-84bc-7397f6e8741e",
"will expire": 1585831626544
3
3

< >

Userinfo Response

x
"sub": "cdcdSage-2711-47d3-abal-e5191583@43d",
“given_name”: “Carlson"”,

“family_name”: "Micheal”,
"preferred_username”: "care_manager_lumc"”,
“gender”: "male”,

"pdm_user_type": “"physcian”,
"pdm_organization”: "lumc"”

Patient Userinfo Response

{

“sub": "@2d545e8-7c86-4c16-84bc-7397F6e8741e",
“given_name™”: "Doe™,

“family_name": "John",

"preferred_username”: "patient_lumc",
taandant. tmailan

Figure 6 Client exchanges code for token

= — [m] %
[ Simple Smart Client x
< (&) }(D app.srdc.com.tr/power2dm/onauth/sample-smart-client/auth_callback.html?code=899727219024100334424025... Q ¥ | s @
2% Uygulamalar Coding Books Scala Fhir Android Stuff & baron 1898 - Google Auth_SRDC » Diger yer isaretieri
Examples

Having an access token, client can make requests to the secure endpoints by passing access token in
authorization header. You can find example requests below in Figure 7 and Figure 8.

POWER2DM - Page 33 of 55



H2020-POWER2DM

[ Simple Smart Client

&

X

C | ® app.srdc.com.tr/power2 auth/sa ack.html?

G baron 1898 - Google

Fhir

Scala

Uygulamalar || Coding | | Books

Android

Stuff

Userinfo Response

{

"sub”: "cdcd5a90-2711-47¢3-abal-e51015830d3d"
"given_name”: "Carlson”,

"family_name": "Micheal®,

"preferred_username”: “care_manager_lumc",
"gender”: "male"
“pdm_user_type": "physcian”,
"pdm_organization”: "lumc"

3

<

Patient UserInfo Response

{

"gender":
"pdm_user._

}

Patient FHIR Resource Response

{
"resourceType": "Patient,
x 00d545¢8-7c86-416-84bc-7397F6e8741e",

"meta”: {
"profile”: [
“nttp: //www.power2dm. eu/pds/StructureDefinition/POHER2DM-Patient”
1
"versionId": "27,
"lastUpdated”: "2017-05-05T13:53:022"

b

e - O X
=45370382 Qx| H @ ¢
Auth SROC [ ] Auth_SRDC_Local Digeryer isaretleri
| @] Clements Console Audits Sources Network Performance Memory x |
® O | ™ ¥ |Vew = = [ Groupbyframe | [J Preservelog [ Disable cache | [ Offiine Nott
Regex [ Hide data URLs |
XHR JS €SS Img Media Font Doc WS Manifest Other
17ms 305ms 323ms 230s 233s 240s 2485 260s
= .
I 500 ms. 1000 ms. 1500 ms: 2000 ms. 3000 ms I
|
Name X | Headers | Preview Response Cookies Timing
[] auth_callback htmi?co... Accept: application/json, text/javascript, */*; g=0.01 .
B jnieryie Accept-Encoding: gzip, deflate
aQ.2,1b34=0.2

bootstrap.min.js
u ' 4 9af
[] bundlejs

|| bootstrap.min.css Cookie: ONAUTH_SESSTONID=09efb49d965d5¢ 3cbf c7ebe 20636907 7b8e87dds-kt
jlgvnoltphcfpib911qd7kl; XSRF-TOKEN=65564

Host: app.srdc.com.tr

Referer: http://app.srdc.com.tr/power2dm/onauth/sample-smart-client/
auth_callback.html?code= 144252761788781 0163617978&sta
te=45370382
User-Agent: Mozil

|_| 00d545€8-7¢86-4c16:
|_| 00d545e8-7c86-4c16

] Observation?patie

1a/5.9 (Windows NT 10.@; Win64; x64) ApplekebKit/53
7.36 (KHTML, like Gecko) Chrome/60.8.3112.113 Safari/537.36
X-Requested-With: XMLHttpRequest

10 requests | 17.5 KB tran...
X |
]

Console

O | top ¥ | Filter Default levels ¥

Navigated to b
code=3369939..&st:

/app.srdc.com. tr/power2dm/onauth/sample-smart-client/auth callback.html?
5370382

[ Simple Smart Client

<«

#1 Uygulamalar

x

C | ® appsrdc.comatr m/onauth/sam; th_callback.htrr i

<)

Coding

Books Scala Fhir Android Stuff baren 1898 - Goog Auth_SRDC

“resourceType": "I
064~

-67F8-212¢0980¢bF6",

-com. tr/power2dn/pds - secure/CDservation Jpat ient~00a545e8 - 7c86- 4c16- B4bc- 7397 F6e8741e"

com. tr/power2dm/ pds - secure/Observation2pat Lent=800545e8- 7C86-4c16-54bc - 7397 #6e8741e8,

om. 1/ power2dn/ pds - secure/Observation2pat ient=00d545e8-7cB6-4c16-Babc-7397F6eB741e8

rdc. com. tr/power2dm/pds - secure/Observationpatient-000545e8- 7¢86- 4c16-84be - 7397 F6e8741e8,

com. tr/power2dm/pds - secure/Observation/14894454-410a- 4693

Bee5-691460c7bba5",

(. power2dm . eu/pds /StructureDefinition/POWER2DM-SimpleCodedObservat ion®

e,
": =2017-98-95T13:53:922"

Figure 8 Client fetches

4.2 Onauth Manager

4.2.1 Home Screen
4211 Patient

Figure 7 Client fetches user info

aw - o x
« awla o
Auth SROC_Lacal Diger yer igaratieri
‘=& Sources Network Performance  Memory x
® © Group by frama Preserve log Disable cac Offline No t
i Regex [ Hide date URLs
@) xHR 5 CSS Img Media Font Doc WS Manifest Other
Ve 306 ms w26
page=1®
ool Name
auth_callback hmitco. -
page-6" N bt
bootstrap.min.js
| bundiejs
s537038
User-Agent
7.36 (KNTH
ng Parameters
10 requests | 17.5 KB tran patient: 004545¢8-7cB6-4c16-84bc-7397f6eB741e .
Console x
Default levels ¥ o

tr/power2on/onauth/samele- smart-client/auth callback.ntml}

patient's observations

Patient home screen consists of four different components (see Figure 9);

of the user; users can view details of each approved

List of devices or 3rd party data providers that user may authorize POWER2DM

rize/deny POWER2DM for the device/application.

o Component-1: List of approved applications
client and remove their approval.

o Component-2: Basic profile information of the user.
Component-3:
to access patient’s own data; users can autho

[ )

permissions, but he cannot unassign care ma

POWER2DM - Page 34 0

Component-4: Care team of the user; user may modify the care team based on his/her

nagers.

f 55



H2020-POWER2DM

- a X
) Onauth-Manager X
€ C | ® app.srdc.com.tr/power2dm/onauth/onauth-manager/home Qu dH @ ¢
£ Uygulamalar Coding Books. Scala Fhir Android Stuff G baron 1898 - Google Auth_SRDC Auth_SRDC_Local Diger yer isaretleri
ﬂ

POWER

1 Approved Applications

Username: patient_lume3

CiientID Approved Date Modi
o " Given Name: Doe
© SRDC SRDC Dummy Client  2017-09-06T07:25:54.013Z n Family Name: Jane
W SRFG Dummy Client 4 2017-09-12T07.53:50.1622 n
* a2burgresearch
4 Care Manager
No Active Care Manager
Self Care Supporter
3 Devices
Device Name Modity Care Manager

- fitbit ot [+ ]

Figure 9 Patient home screen

4.2.1.2 Care Provider

Home screen for care provider consists of 3 different components (see Figure 10);
e Component-1: List of patients which the user is authorized for; user may switch between patients
to see the details.
e Component-2: Basic profile information of the selected patient.
o Component-3: Care team of the selected patient; user may modify patient’s care team based on
his/her permissions. He can add new care managers or care supporters.

Lo . a X
) Cnauth-Manager x
€ - € [@ sppsrdccomir/power2dm/onauth/onauth-manager/#patientScreen an|e o
# Uygulamalar Coding Books Scala Fhir Android Stff G baron 1898 - Googl Auth_SRDC Auth_SRDC_Local Diger yer igaretieri

POWER

Username: patient_lume

First Name:

Given Name: Doe

Family Name: John

patent_lumc2 Doe Jane
patent_lume3 Doe Jane = —
e snen pe=m 3
simon2 Simon Cuper No Active Care Manager
simon3 Simon Cuper
Self Care Supporter
simond Simon Cuper
patient_lumc9 ozan kose Care Manager

Figure 10 Care Provider home screen

POWER2DM - Page 35 of 55



H2020-POWER2DM

4.2.2 Policy Management

Patients can create several policies of their own by extending the base policy defined for POWER2DM.
Policy management screen contains a table where each column represents a functional role, each row
represents a resource set and intersection of a row and column represents that role’s permission for the
resource set. In addition, patients also can apply, delete and update an existing policy. Rules that are
marked as locked couldn’t be modified by the patients.

) Onauth-Manager x

< C | ® appsrdc.comitr, r2dm/onauth/onauth-manager/acce o QALY & @
$ Uygulsmaisr || Coding | Books | Scala || Fhir || Android | Sw G baron 1896 - Googl Autn SRDC | | Auth_SRDC_Local Digeryer igaretteri

Important Warning!!!
- Modifying/Changing privacy policy does not have any effect on tokens that already generated

- Your policies may be deleted if your administrator changes base policy.
Access Control Policy
® My Policy

Default SRDC onFHIR privacy policy

ew Policy SAVE

w & w
CommunicationRequest Can Read / Can't Write Can't Read / Can't Write (Locked) Can Read / Can't Write

Conformance Can Read / Can't Write Can Read / Can't Write Can Read / Can't Write

Figure 11 Policy management screen

Although, this interface provides detailed policy management to patient, after discussions with piloting
partners, it is decided to go with a single POWER2DM access control policy that simplifies the
procedure and POWER2DM care which will be defined by POWER2DM realm manager from the same
interface.

4.2.3 User Registration

Users can register new users if they have permission for user registration by using the user registration
form provided by this screen. Type of user and permissions that newly registered user will get are
dependent on the roles are set during registration process. Below, you can find an example patient
registration performed by a practitioner;

POWER2DM - Page 36 of 55



H2020-POWER2DM

POWER

Registration Form

Username* {Study Number)

Enter user name

Gender*

Select Gender b

Birth Year®

Enter birth year

Role*

# Patient

Email

Enter emai

Zone Info
+01:00

Locale

en

Figure 12 Patient Registration form

Upon successful registration, practitioner who registered this new patient with username
“example new_user” is added to the care team of the newly registered patient.

4.2.4 Client Registration

In order to use OpenID Connect 1.0 endpoints defined in this document, clients should be registered to
Onauth Server. Users can register a new client or modify an existing client application using the client
registration form provided by this screen;

POWER2DM - Page 37 of 55



H2020-POWER2DM

GRER - o X
) Cnauth-Manager x\
& & C | ® appsrdc.com.tr/power2dm/onauth/onauth-manager/client-manage Q%|d @
3 Uygulamalar || Coding || Books || Scala || Fhir || Android || Suff G baron1898-Google || AuthSRDC || Auth SRDCLocal Diger yer isaretiei
/\” -
e
—
—
——

Choose your action

Register a new client:

Enter the configuration token(which is provided to you when you have registered your client) of the client you want to modify:

Client Configuration Token

Update

Figure 13 Client registration menu

[oza) - o X
1) Cnauth-Manager x\
& C | ® appsrdccomirpowerd h/onauth-manager/client-registration Qxla @

£ Uygulamalar Coding Books Scala Fhir Android Stuff G baron 1898 - Google Auth_SRDC Auth_SRDC_Local Diger yer isaretleri

%

Registration Form

Redirect URIs*
Enter a Redirect URI 4=

Grant Types*

[} authorization_code

[ client_credentials

[ refresh_token

Figure 14 Registration form for clients

Upon successful registration, users are prompted with new screen that shows the credentials of the newly
registered client;

POWER2DM - Page 38 of 55



H2020-POWER2DM

o) - o X
) Onauth-Manager X
<« C | ® app.srdc.com.tr/power2dm/onauth/onauth-manager/client-registration Q ﬁ‘ )
£ Uygulamalar Coding Books. Scala Fhir Android Swff G baron 1898 - Google Auth_SRDC Auth_SRDC_Local Diger yer isaretleri

Save Your Credentials

Client ID
d41c1010-eeff-4115-a316-ebe67b45b645

Client Secret
8t8obfs6ckq001ld8gceulgtmg

Client Configuration Token
4bstaof1f1st7hqs7jg5j01g2v

Figure 15 Successful client registration

4.2.5 Audit Viewer

Patients can see audit records about them from the audit viewer as shown in Figure 16. Audit viewer
lists audit records on a table and patients can view details of any record by selecting it from table.
Records on the table could be filtered by using the filters defined on the left-hand side of the screen.

- 0 X
) Onauth-Manager X
€ (¢] !D app.srdc.com.tr/power2dm/onauth/onauth-manager/audit-viewer H 0
i Uygulamalar [ | Coding [ Books [| Scala [ Fhir [ Android || Stuff G baron 1398 - Google Auth SROC [ Auth SRDC_Local Diger yer isaretleri

a

Filtrs (Audit Event) Audit Event Logs Stiate; End Biate -

2012/09/20 2017/09/20

B Records Access/Update
¥/ Search Records
- Advanced Filters
¥ Read Record
¥ Update Record
. Time Requestor Triggering System Target System Action Data Owner Object Outcome
¥/ Create Record
¥ Delete Record MW hug 22010
| Authentication Related 14:16 172.17.01 search-type Success =
¥ Login 116 1724701 read Success E
v =
< Logout 1357 17217.01 search-type Success =
@ Aoplicati

Applcaton Sar 1B 1721701 read Success =
¥/ Application Stoj

o P 13.37 1724701 create Success =]

<prev next>

Filters (Requester)

Al None

¥I172.17.01

Figure 16 Audit view for patients

POWER2DM - Page 39 of 55



H2020-POWER2DM

Last Updated:

Event

Subtype:

Date/Time:

Qutcome:

£ Cnauth-Manager x
< [ BN pp.srdc.com.tr/power2dm/onauth/onauth-manager/audit-viewer/audit/1ac76912-1134-4176-af7b-a93e2f2810a¢]
% Uygulamalar Coding Books Fhir Android Stuff G baron 1898 - Google Auth_SRDC Auth_SRDC_Local
iZ Table View Raw JSON
Property Value
Full URL: http://app.srdc.com.tr/fhir/stu3/AuditEvent/1ac76912-1134-4176-af7b-a93e2f2810ae
ID: 1ac76912-1134-4176-af7b-a93e2f2810ae

2017-08-09T14:16:45Z

search-type
2017-08-09T14:16:45.900+00:00

Success

Figure 17 Patient audit detail

S Appendices

5.1 Appendix A— POWER2DM Privacy Policy

{

"id": "power2dm privacy policy",

"name": "Default SRDC onFHIR privacy policy",

"description":

"authorId":

"power2dm admin",

"lastUpdateTime": "2017-04-04T20:30:302",

"resourceSetId": "sample-resource-set-Id",

"realm id":

"powerz2dm",

"patient access": "care team",

"isBase": true,

"isActive":

"rules": {

"Patient":

true,

{

"care-manager": {

"read": 1

y

"care-supporter": {

POWER2DM -

Page 40 of 55

"Simple privacy policy for testing purposes",

oz

- o X

& @

Diger yer isaretleri



H2020-POWER2DM

"read": 1
br
"self-care-manager": {
"read": 1
by
"self-care-supporter": {

"read": 1

by
"Device": {
"care-manager": {
"read": 1
bo
"care-supporter": {
"read": 1
by
"self-care-manager": {
"write": 1
bo
"self-care-supporter": {

"read": 1

by
"Composition": ({

"care-manager": {
"write": 1

by

"care-supporter": {
"read": 1

}y

"self-care-manager": {

"read": 1

by
"Condition": {
"care-manager": {

"write": 1

POWER2DM - Page 41 of 55



H2020-POWER2DM

by

"care-supporter": {
"read": 1

br

"self-care-manager": {

"write": 1

br
"Goal": {
"care-manager": {
"write": 1
by
"care-supporter": {
"read": 1
br
"self-care-manager": {
"write": 1
by
"self-care-supporter": {

"read": 1

}y
"ProcedureRequest": {
"care-manager": {
"write": 1
}y
"care-supporter": {
"read": 1
s
"self-care-manager": {
"write": 1
s
"self-care-supporter": {

"read": 1

,

"MedicationOrder": {

POWER2DM - Page 42 of 55



H2020-POWER2DM

"care-manager": {
"write": 1

by

"care-supporter": {
"read": 1

br

"self-care-manager": {
"read": 1

by

"self-care-supporter": {

"read": 1

bo
"Appointment": {
"care-manager": {
"write": 1
br
"care-supporter": {
"write": 1
by
"self-care-manager": {
"write": 1
by
"self-care-supporter": {

"read": 1

by
"Encounter": {
"care-manager": {
"write": 1
}y
"care-supporter": {
"read": 1
by
"self-care-manager": {

"read": 1

POWER2DM - Page 43 of 55



H2020-POWER2DM

by
"Observation": {
"care-manager": {
"write": 1
by
"care-supporter": {
"read": 1
br
"self-care-manager": {
"write": 1
bo
"self-care-supporter": {

"read": 1

br
"Procedure": {
"care-manager": {
"write": 1
bo
"care-supporter": {
"read": 1
}y
"self-care-manager": {
"write": 1
by
"self-care-supporter": {

"read": 1

s
"RiskAssessment": {
"care-manager": {
"write": 1
}y
"care-supporter": {
"read": 1
s

"self-care-manager": {

POWER2DM - Page 44 of 55



H2020-POWER2DM

"read": 1
br
"self-care-supporter": {

"read": 1

b
"QuestionnaireResponse": {
"care-manager": {
"write": 1
b
"care-supporter": {
"read": 1
b
"self-care-manager": {

"write": 1

br
"MedicationAdministration": {
"care-manager": {
"read": 1
by
"care-supporter": {
"read": 1
}y
"self-care-manager": {
"write": 1
by
"self-care-supporter": {

"read": 1

by
"Order": {
"care-manager": {
"write": 1
by
"care-supporter": {

"read": 1

POWER2DM - Page 45 of 55



H2020-POWER2DM

by
"self-care-manager": {

"read": 1

by
"OrderResponse": {
"care-manager": {
"write": 1
by
"care-supporter": {
"read": 1
by
"self-care-manager": {

"read": 1

by

"CommunicationRequest": {

"care-manager": {
"read": 1

by

"care-supporter": {
"read": 1

by

"self-care-manager": {

"write": 1

}o
"Basic": {
"care-manager": {

"read": 1

s

"care-supporter": {
"read": 1

by

"self-care-manager": {

"write": 1

POWER2DM - Page 46 of 55



H2020-POWER2DM

s

"careteam/self-care-supporter":

"care-manager": {

"read": 1,

"isSmartScope": false
by
"care-supporter": {
"read": 1,
"isSmartScope": false
bo
"self-care-manager": {
"write": 1,
"isSmartScope": false

s

"self-care-supporter":

"read": 1,

"isSmartScope":

by

false

"careteam/care-manager":

"care-manager": {
"write": 1,
"isSmartScope":

by

"care-supporter":
"write": 1,
"isSmartScope":

,

false

false

"self-care-manager": {

"read": 1,
"isSmartScope":

y

false

"self-care-supporter":

"read": 1,

"isSmartScope":

POWER2DM -

false

Page 47 of 55



H2020-POWER2DM

by

"careteam/care-supporter": {

s

"care-manager": {
"write": 1,
"isSmartScope": false

b

"care-supporter": {
"write": 1,
"isSmartScope": false

b

"self-care-manager": {
"read": 1,
"isSmartScope": false

by

"self-care-supporter": {
"read": 1,

"isSmartScope": false

"Practitioner": {

"care-manager": {
"read": 1

by

"care-supporter": {
"read": 1

s

"self-care-manager": {
"read": 1

s

"self-care-supporter": {
"read": 1

s

"group admin": ({
"read": 1

by

"client admin": {

"read": 1

POWER2DM - Page 48 of 55



H2020-POWER2DM

b
"realm admin": {

"write": 1

by

"Organization": {

"care-manager": {
"read": 1

by

"care-supporter": {
"read": 1

by

"self-care-manager": {
"read": 1

br

"self-care-supporter": {
"read": 1

by

"group admin": {
"read": 1

by

"client admin": {
"read": 1

s

"realm admin": {

"write": 1

s

"Medication": {

"care-manager": {
"read": 1

s

"care-supporter": {
"read": 1

by

"self-care-manager": {

"read": 1

POWER2DM - Page 49 of 55



H2020-POWER2DM

by

"self-care-supporter": {
"read": 1

by

"group admin": {
"read": 1

by

"client admin": {
"read": 1

by

"realm admin": {

"write": 1

by

"Parameters": {

"care-manager": {
"read": 1

by

"care-supporter": {
"read": 1

by

"self-care-manager": {
"read": 1

s

"self-care-supporter": {
"read": 1

by

"group admin": {
"read": 1

by

"client admin": {
"read": 1

by

"realm admin": {

"write": 1

y

POWER2DM - Page 50 of 55



H2020-POWER2DM

"Conformance": {

"care-manager": {
"read": 1

br

"care-supporter": {
"read": 1

by

"self-care-manager": {
"read": 1

br

"self-care-supporter": {
"read": 1

bo

"group admin": {
"read": 1

by

"client admin": {
"read": 1

bo

"realm admin": {

"write": 1

by

"StructureDefinition": {

"care-manager": {
"read": 1

s

"care-supporter": {
"read": 1

by

"self-care-manager": {
"read": 1

by

"self-care-supporter": {
"read": 1

y

POWER2DM - Page 51 of 55



H2020-POWER2DM

"group admin": {
"read": 1

by

"client admin": {
"read": 1

by

"realm admin": {

"write": 1

}y

"SearchParameter": {

"care-manager": {
"read": 1

br

"care-supporter": {
"read": 1

by

"self-care-manager": {
"read": 1

by

"self-care-supporter": {
"read": 1

s

"group admin": {
"read": 1

by

"client admin": {
"read": 1

by

"realm admin": {

"write": 1

,

"ValueSet": {

"care-manager": {

POWER2DM - Page 52 of 55



H2020-POWER2DM

"read": 1

br

"care-supporter": {
"read": 1

by

"self-care-manager": {
"read": 1

br

"self-care-supporter": {
"read": 1

bo

"group admin": {
"read": 1

by

"client admin": {
"read": 1

br

"realm admin": {

"write": 1

by
"AuditEvent": {
"realm admin": {
"read": 1
by
"self-care-manager": {

"read": 1

s
"UserInfo": {
"group admin": {
"read": 1
by
"care-manager": {
"read": 1
s

"care-supporter": {

POWER2DM - Page 53 of 55



H2020-POWER2DM

"read": 1
br
"self-care-manager": {
"read": 1
}
br
"user registration/patient”: ({
"practitioner": {
"isSmartScope": false
br
"group admin": {
"isSmartScope": false
}
by
"list users/practitioner": {
"group admin": {
"isSmartScope": false
by
"practitioner": {
"isSmartScope": false
by
"nurse": {
"isSmartScope": false
}
by
"list users/nurse": {
"group admin": {
"isSmartScope": false
s
"practitioner": {
"isSmartScope": false
s
"nurse": {
"isSmartScope": false
}
s
"list users/patient": {

POWER2DM - Page 54 of 55



H2020-POWER2DM

"group admin": {
"isSmartScope": false

}y

"practitioner": {
"isSmartScope": false

br

"nurse": {
"isSmartScope": false

}y
"patient": {

"isSmartScope": false
}
bo
"user registration/practitioner™: ({
"group admin": {
"isSmartScope": false
}
by
"user registration/nurse": {
"group admin": {
"isSmartScope": false

POWER2DM - Page 55 of 55



